
Evaluating Sorting Algorithms
with Varying Data Sortedness

Wei-Tse Kao, I-Ju Lin

May 2nd, 2023

Why sorting is important?

2

Background

Outline

● Sorting and Sortedness

● (K, L) Sortedness Matrix

● (K, L) Sorting Algorithm

● Benchmark - BoDS

3

Why sorting is important? Benefits of Sorting

● Faster read

● Better performance in index designed structure

● Easier data analysis

4

Sortedness
Refers to the degree to which the data is ordered

5

Degree of Sortedness

(K, L)-Sortedness Metric

● K: the number of the elements are out of place
● L: the maximum positional displacement of the out-of-order elements

6

Define Near-Sorted Index

● K-close to being sorted:

The size of unordered indices set is

smaller or equals to K.

● L-globally sorted:

The distance between the locations

of any two unsorted tuples is

always smaller than L.

2 1

x x

7

Workloads respective to (K, L)

X-axis: position of entry in data.

Y-axis: entry-value.
(a) K=0%, L=0% (b) K=10%, L=10% (c) K=20%, L=10%

(d) K=50%, L=25% (e) K=100%, L=50% (f) K=100%, L=100%

8

(K, L) Sort by Binary Min Heap

Heap GHeap S TMP
array:

OUT
array: 1 2 3 4 5 6 7 8 9 10

Size: (K+L+1) = 6

9

rest
“smallest”

(K, L) Sort by Binary Min Heap

Best Case: Worst Case: Memory: Stable:
O(n) O(n log(n)) O(n) Yes

where heap extractMin() and insert() takes O(log n).

Heap GHeap S TMP:

OUT: 1 2 3 4 5 6 7 8 9 10

10

BoDS
Benchmark on Data Sortedness

Data generator producing data respective to specific values of the (K, L)-sortedness metric.

https://github.com/BU-DiSC/bods

https://github.com/BU-DiSC/bods

BoDS: Benchmark on Data Sortedness

Input parameters:

● K: proportion(%) of the elements are out of place

● L: proportion(%) maximum positional displacement of the out-of-order elements

● N: number of entries

● 𝛼, 𝛽: parameter to regulate distribution map of indexes

● P: size of payload

https://github.com/BU-DiSC/bods
12

https://github.com/BU-DiSC/bods

Selection of 𝛼, 𝛽

When 𝛼=1, 𝛽=1, the displacements are uniformly distributed

(a) 𝛼=1, 𝛽=1 (b) 𝛼=2, 𝛽=2 (c) 𝛼=0,5, 𝛽=0.5 (d) 𝛼=2, 𝛽=5

Probability distribution of Beta-distribution map bounded between [−L, L]

13

Experiment: 5min

14

Experiment
Evaluating Sorting Algorithms with

1. Sorted index workload
2. Unsorted index workload
3. Partially sorted index workload

15

16

P-value

E-Work Life Scale - Pearson Test
n = 42
α = 0.05

BoDS: Benchmark on Data Sortedness

./sortedness_data_generator -N 10000000 -K 10 -L 10 -o ./created_data.txt -S 0 -a 1 -b 1 -P
0

10,000,000 = 107

entries to generate

10% * 107 = 106
entries is out of place

10% * 107 = 106
is the max displacement

Random Seed: 0

Key beta-distribution
with 𝛼=1, 𝛽=1.

Payload size: 0 bytes

https://github.com/BU-DiSC/bods
17

https://github.com/BU-DiSC/bods

BoDS: Benchmark on Data Sortedness

https://github.com/BU-DiSC/bods

K L

100 1

50 1

25 1

10 1

5 1

1 1

K L

1 5

1 10

1 25

1 50

1 100

100 100

for ((k=0; k<=100; k+=10)); do

 for ((l=0; l<=100; l+=10)); do

 OUTPUT="./workloads/createdata_10M_K"${k}"_L"${l}".txt"

 ./sortedness_data_generator -N 10000000 -K $k -L $l -o $OUTPUT -S 0 -a 1 -b 1 -P 0

 done

done

18

https://github.com/BU-DiSC/bods

Sorted and nearly-sorted relations

19

Sagi Ben-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and Carl Staelin. 2011. Detecting and
exploiting near-sortedness for efficient relational query evaluation, ICDT '11.
https://doi.org/10.1145/1938551.1938584

K (%)

L (%)

20

20

40

100806040

60

80

1001M Workload

Generated

by BoDS

x-axis: position of entry in data.

y-axis: entry-value.

K: scattered proportion.

L: range from y = x.

20

Setup: Implementation and Solution Approach

- Windows Subsystem for Linux

- Intel® Core™ i9-11900H@2.5 GHz

- 24M Cache

- 8 Cores

- Two 16GB of RAM

- C++ libraries:
algorithm, chrono, climits, cstdlib,
fstream, iostream, string.

21

Experiment Interface

./main.out ./created_data_K50_L1.txt ./result.csv kl_sort 100 100

File path of the input
workload generated by BoDS

File path to store output

Sorting algorithm to use

Divisor for K when using kl_sort:
Estimated K =107 * 50% / 100 = 5 *104

Divisor for L when using kl_sort:
Estimated L =107 * 1% / 100 = 103

22

Example Output

K K_DIV L L_DIV ALGORITHM DURATION (ns)
50 100 1 100 kl_sort 46342235
25 100 1 100 kl_sort 35101784
10 100 1 100 kl_sort 31461449
5 100 1 100 kl_sort 33199069

Rows in ./result.csv

23

./main.out ./created_data_K50_L1.txt ./result.csv kl_sort 100 100

Sorting Algorithm Baselines

Best Case Worst Case Memory Stable
106 Sorted Index

(seconds)
106 Unsorted Index

(seconds)
KL Sort O(n log(n)) O(n log(n)) O(n) Yes 0.000008 3.859853

Insertion Sort O(n) O(n2) O(1) Yes 0.055174 288.114436
Quick Sort O(n log(n)) O(n2) O(log(n)) No 0.535943 0.772779

std::stable_sort O(n log(n)) O(n log2(n)) O(n) Yes 0.700985 1.284057
TimSort O(n) O(n log(n)) O(n) Yes 0.961878 1.464594

Merge Sort O(n log(n)) O(n log(n)) O(n) Yes 1.272614 1.999205
Radix Sort O(n) O(n) O(n) Yes 2.083822 0.628858

Selection Sort O(n2) O(n2) O(n2) No 531.778953 516.02257

24

Big-O Analysis

25

Big-O Analysis

26

Big-O Analysis

27

Sorting Algorithm Baselines

Best Case Worst Case Memory Stable
106 Sorted Index

(seconds)
106 Unorted Index

(seconds)
Radix Sort O(n) O(n) O(n) Yes 2.083822 0.628858
Quick Sort O(n log(n)) O(n2) O(log(n)) No 0.535943 0.772779

std::stable_sort O(n log(n)) O(n log2(n)) O(n) Yes 0.700985 1.284057
TimSort O(n) O(n log(n)) O(n) Yes 0.961878 1.464594

Merge Sort O(n log(n)) O(n log(n)) O(n) Yes 1.272614 1.999205
KL Sort O(n) O(n log(n)) O(n) Yes 0.000008 3.859853

Insertion Sort O(n) O(n2) O(1) Yes 0.055174 288.114436
Selection Sort O(n2) O(n2) O(n2) No 531.778953 516.02257

28

Performance of Algorithms on various Sortedness

29

Performance of Algorithms on various Sortedness:
K/1, L/1

30

Performance of Algorithms on various Sortedness:

31

8G RAM
v.s.
32G RAM

Comprehensive Analysis

32

Estimate a Lower K or L

33

Estimate a Lower K or L

34

Conclusion: 3min

35

Conclusion
● K is a crucial factor in all experiments.

● Quick sort outperforms under
nearly-sorted data.

● (K, L)-sort works best with a
shrunken K from BoDS under
nearly-sorted data.

36

Remaining experiments and analysis

● Coefficient analysis over sorting algorithms’ big-o complexity.

● Generate scrambled workload with std::shuffle().

● Experiments on nearly-sorted L from 0.0001% to 1%.

● Implement (K, L) estimation by exponential search for minimal ones without failure.

● Provide the tradeoff analysis on (K, L) estimation methods.

● At least three trials on each experiments.

● Implement additional sorting algorithms: K-sort, Spreadsort, other stable sortings.

● Space complexity analysis and the actual memory footprint record.
37

Expected results

● Big-O complexity with coefficient on the highest rank for each sorting algorithm.

● Clarify the difference between std::stable_sort() and mergesort.

● Prove that K-sort is suitable for nearly sorted workload,
while radix sort and quick sort is for general usage.

● Show the tradeoff between time and space among sorting algorithms.

● Provide hyper-parameters for tuning K estimation.

● Draw all figures with standard deviation shadow.

● Add args names for API to allow out of order commends

38

Interesting & Challenging Experience

1. Knowing the exploration and design process, how can we find a state-of-the-art

adaptive index sorting algorithm that beats all baselines?

2. More questions after this project:

a. How to estimate L in a wild field?

b. Would the (K, L) estimation takes longer than the saved sorting time?

c. If the total (K, L) estimation and sorting time is longer than baselines,

(K, L) sortedness might not be a useful benchmark.

39

Advice on the technical aspect

1. Use int data type to avoid machine-level optimization in C++ compiler.

2. Use Linux system to allow clearing on RAM and swap files.

3. Use mixed workloads including writing operations (inserts, updates, deletes).

4. Use self-craft or multi generators to decouple the dependency on libraries.

5. Charging or not for the hardware device affects the performance a lot.

40

Evaluating Sorting Algorithms
with Varying Data Sortedness

Wei-Tse Kao, I-Ju Lin

May 2nd, 2023

Related Class Sessions

● Class 12: Adaptive Radix Trees (student presentation S2)
○ The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases, ICDE 2013. (R2)

● Class 13: Adaptive Indexing & Cracking (student presentation S3)
○ Adaptive Adaptive Indexing, ICDE 2018. (Technical Question T3)
○ Self-organizing Tuple Reconstruction in Column-stores, SIGMOD 2009.

● Class 14: Guest Lecture on Sortedness-Aware Indexing: Aneesh Raman
○ Indexing for Near-Sorted Data, ICDE 2023.
○ BoDS: A Benchmark on Data Sortedness, TPCTC 2022.

● Class 23: Guest Lecture on Learned Index: Ryan Marcus
○ LSI: A Learned Secondary Index Structure, SIGMOD 2022.
○ Benchmarking Learned Indexes, VLDB 2021.

42

Result: Estimate a Lower K or L

43

Beta Distribution from Wikipedia

44

Workload
Generator

45

Reimplementation

https://github.com/BU-DiSC/sware
46

https://github.com/BU-DiSC/sware

Is this true?

47

(K, L) Sort by Binary Min Heap

Heap G

Heap S

Insert the first (k+l+1) = 6 tuples into S:

2

43

5 69

Heap S

R:

k = 2, l = 3.

48

(K, L) Sort by Binary Min Heap

i_write = 1;

for i_read = |S| + 1 = 7 to n = 10:

i_read = 7;

last_written = 2;

Heap S

2

43

5 69

49

(K, L) Sort by Binary Min Heap

i_read = 7, last_written = 2, i_write = 1;

Write last_written = 2 to TMP[i_write] = TMP[1]

 R[i_read] = R[7] = 8

If (R[i_read] = 8) >= (last_written = 2) then
Insert R[i_read] = 8 into S;

Heap S

3

45

69

TMP: 2

8

50

(K, L) Sort by Binary Min Heap

i_read = 8, last_written = 3, i_write = 2;

Write last_written = 3 to TMP[i_write] = TMP[3]

 R[i_read] = R[8] = 7

Heap S

3

45

69

TMP: 2 3

8

51

(K, L) Sort by Binary Min Heap

If (R[i_read] = 7) >= (last_written = 3) then

Insert R[i_read] = 7 into S;

Heap S

4

75

69 8

52

(K, L) Sort by Binary Min Heap

i_read = 9, last_written = 4, i_write = 3;

Write last_written = 4 to TMP[i_write] = TMP[3]

else
Insert R[i_read] = 1 into G;

TMP: 2 3 4

Heap S

4

75

69 8

 Heap G 1

53

(K, L) Sort by Binary Min Heap

i_read = 10, last_written = 5, i_write = 4;

Write last_written = 5 to TMP[i_write] = TMP[4]

If (R[i_read] = 10) >= (last_written = 5) then
Insert R[i_read] = 10 into S;

end for

TMP: 2 3 4 5

Heap S

5

76

89 10

54

(K, L) Sort by Binary Min Heap

Append all tuples in S to TMP in sorted order;

i_write = 1;

for i_read = 1 to (n - |G| = 10 - 1 = 9):

i_read = 1;

TMP: 2 3 4 5 6 7 8 9 10

Heap S

6

78

109
Heap G 1

55

(K, L) Sort by Binary Min Heap

TMP: 2 3 4 5 6 7 8 9 10

 Heap G 1

i_read = 1, x = 1, i_write = 1;

else
Write (x = 1) to OUT[i_write] = OUT[1]
Remove (x = 1) from G
Add (TMP[1] = 2) to G

2

OUT: 1

56

(K, L) Sort by Binary Min Heap

TMP: 2 3 4 5 6 7 8 9 10

Similarly till the end of loop:

i_read = 9, x = 9, i_write = 9;

else
Write (x = 9) to OUT[i_write] = OUT[9]
Remove (x = 9) from G
Add (TMP[9] = 10) to G

end for

OUT: 1 2 3 4 5 6 7 8 9

 Heap G 9 10

57

(K, L) Sort by Binary Min Heap

Append all tuples in G to OUT in sorted order.

OUT: 1 2 3 4 5 6 7 8 9 10

 Heap G 10

Best Case: Worst Case: Memory: Stable:
O(n log(n)) O(n log(n)) O(n) Yes

, where heap extractMin() and insert() takes O(log n).

58

