COMPRESSION ALGORITHMS WITH NEAR SORTEDNESS

HARSHITHA TUMKUR KAILASA MURTHY - U00683580 VISHWAS BHAKTAVATSALA - U74206902

WHY IS COMPRESSION IMPORTANT ?

REDUCES THE FILE SPACE ON HARD DRIVE

REDUCES FILE TRANSFER TIME

REDUCES REDUNDANCY

LOSSLESS COMPRESSION

WHAT IS SORTEDNESS?

ALGORITHMS WE CHOSE FOR OUR RESEARCH

- 1. RUN LENGTH ENCODING
- 2. DELTA COMPRESSION
- 3. 2STANDARD
- 4. SNAPPY COMPRESSION
- 5. 1277

RUN LENGTH ENCODING

DELTA COMPRESSION ALGORITHM

META'S ZSTANDARD ALGORITHM

DICTIONARY

L277 & SNAPPY COMPRESSION

TYPES OF WORKLOADS CONSIDERED FOR OUR EXPERIMENTS

Ranges are referred from BoDS research paper.

Workload Length: 5M

Workload Size ~40Mb

Workload Length: 10M

Workload Size: 40Mb

VARYING FREQUENCY

VARYING FREQUENCY

VARYING FREQUENCY

SORTEDNESS EXPERIMENTS

SORTEDNESS EXPERIMENTS

SCALABILITY EXPERIMENTS

CONCLUSION AND FUTURE WORK

- DELTA COMPRESSION IS ONE AMONG THE BEST COMPRESSION ALGORITHMS FOR REDUNDANT AS WELL AS NEAR SORTED DATA BUT THE COMPRESSION RATIO TAKES A HIT.
- GOOGLE'S SNAPPY ALGORITHM IS FAST AND EFFICIENT AND HAS A BETTER COMPRESSION THAN DELTA.
- OVERALL, SNAPPY COMPRESSION HAS BETTER PERFORMANCE AND METRICS THAN OTHER COMPRESSION ALGORITHMS IN FOCUS
- AS PART OF THE FUTURE WORK, WE CAN PERFORM MORE INTRICATE EXPERIMENTS AND RESEARCH NEW ALGORITHMS LIKE LZ4, HUFFMAN ETC.

THANK YOU