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Introduction - Problem

- Usage of Database Management Systems (DBMSs) concerns processing raw data into
analytical insight. = “Hybrid Transactional-Analytical Processing (HTAP)”

- HTAP workloads are often segmented into two parts:
- 1 DBMS optimized for On-Line Transactional Processing (OLTP) workload
- 1 DBMS optimized for On-Line Analytical Processing (OLAP) workload

PROBLEMS

- Time - Inability for immediate data utilization at the application level
- Cost - Costly Administrative Overhead, estimated at ~“50% of the total operating cost




Introduction - Solution?

ONE SOLUTION — Single HTAP DBMS capable of both:

- Transactional (OLTP) benefits: high throughput + low latency transactions performed

- Analytical (OLAP) benefits: complex, long-running queries to operate on “hot”
(transactional, more recent, more frequented) and “cold” (historical, less recent, less
frequented) data

L MAIN CHALLENGE: Heavily-affected performance when performing transactional
(OLTP) and analytical (OLAP) processes concurrently

L CURRENT FIX: implement separate query execution engines for different
workloads

- OLTP execution engines process transactions for row-oriented data
- OLAP execution engines process analyses for column-oriented data




Introduction - Better Solution?

CHALLENGES WITH THE CURRENT FIX:

- Increase in undue DBMS complexity
- Worse performance with the required maintenance on additional overhead
- Only a limited range of queries possible

A BETTER SOLUTION?

The proposed “Flexible Storage Model”
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(a) OLTP-oriented N-ary Storage Model (NSM)

[ o | macemm | w~ame | price [ pata |
101 201 ITEM-101 10 DATA-101
102 202 ITEM-102 20 DATA-102
103 203 ITEM-103 30 DATA-103
104 204 ITEM-104 40 DATA-104

(b) OLAP-oriented Decomposition Storage Model (DSM)

[ o | macem | name | price | pata |
101 201 ITEM-101 10 DATA-101
102 202 ITEM-102 20 DATA-102
103 203 ITEM-103 30 DATA-103
104 204 ITEM-104 40 DATA-104

(c) HTAP-oriented Flexible Storage Model (FSM)

Figure 1: Storage Models — Different table storage layouts work well for
OLTP, OLAP, and HTAP workloads. The different colored regions indicate
the data that the DBMS stores contiguously.



TILE BASED ARCHITECTURE

TILE TUPLES / PHYSICAL TILES / TILE GROUPS

[ o | macem | name | price | pata | WHAT ARE THEY?

Tite J101 201 ITEM-101 | Tile |10 DATA-101 Til . . .

ol = rrEM_m| A2 |2° ——— } s A set of tile tuples form a physical tile. The

e = Lt = CallaalE 2 collection of physical tiles is a tile group.
Tile [TTEM-104 20| rite [paTA-104 Tile The physical tiles belonging to a tile group

B-1 |105 205| B-2 |mEM-105 50| B-3 |DATA-105 Group . .

¥y | N 6 DATA106 B contain the same number of tile tuples.

Tile 107 207 ITEM-107 70 DATA-107
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Group
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ITEM-110 DATA-110
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TILE BASED ARCHITECTURE

LOGICAL TILES

WHAT ARE THEY?

These are representative of values spread across a collection of physical tiles from
one or more tables. Abstracts hybrid layout specifics without affecting
performance.
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TILE BASED ARCHITECTURE

LOGICAL TILES

Logical
Tile
Materialized
Tile




TILE BASED ARCHITECTURE

LOGICAL TILE ALGEBRA

Bridge Operators Metadata Operators
=> Connect logical and physical tiles (using => Modifies data of operators, not the
table accessing methods) data it represents
€ Sequential scan € Projection
e Makes a logical tile for every e Modifies list of attributes to
tile group in the table remove those not needed in
€ Indexscan the final result
® (Constructs one or more € Selection
logical tiles that contain e Modifies metadata, marks
matching tuples (that match rows that don’t satisfy the
predicate using index) predicate as not part of the
physical tile




Logical

Tile |101 201 ITEM-101 | Tile |10 DATA-101
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TILE BASED ARCHITECTURE

LOGICAL TILE ALGEBRA

SELECT R.c, SUM(S.z)
Mutators FROM R JOIN S ON R.b = S.y
=> Modify data stored in table WHERE R.a = 1 AND S.x = 2
GROUP BY R.c;
¢ Insert - T O
aterialize, "
& Delete | |
¢ U pdate I eisum(z) Aggregate, { LT, C}, { LT }
| |
.. MR b=5.y Join, { LT, LT }, { LT }
Pipeline Breakers A S |
=> Consume the logical tiles produced by Tb,c Ty,2 Projection, { LT }, { LT }

=2 Sequential Scan, { T, P}, { LT }

Table

their children in the plan tree |
=> Block execution of upper level operators |
while they wait for children’s output




TILE BASED ARCHITECTURE

LOGICAL TILE

BENEFITS?

% complexity is reduced -,
> due to abstraction mmm
> operators need not be specialized for all storage layouts

** reduces interpretation overhead through vectorized
processing

% flexible materialization (can happen at any time)

complex intermediate query execution is easier to process




CONCURRENCY CONTROL

LOGICAL TILE
WHY?

Multi-version Concurrency control is implemented so OLAP (on-line
analytical processing) queries do not see the effects of transactions
that start after they begin and the readers should not block on
writers.

e Txnld: A placeholder for the identifier of the transaction that
currently holds a latch on the tuple.

e BeginCTS: The commit timestamp from which the tuple be-
comes visible.

e EndCTS: The commit timestamp after which the tuple ceases
to be visible.

PreV: Reference to the previous version, if any, of the tuple.




CONCURRENCY CONTROL

LOGICAL TILES

BeginCTS

EndCTS PreV
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Mutators

Insert, delete, update




CONCURRENCY CONTROL

LOGICAL TILES

BeginCTS

EndCTS PreV
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Bridge Operators

sequential scan, index scan




An order-preserving in-memory index is used

(e.g., B+tree) for primary and secondary
indexes.

The key value is a logical location of the latest
version of a tuple.

An operator might encounter a version of the
tuple that is not visible to its current
transaction. When this occurs, it uses the PreV
field to traverse the version chain to find the

newest version of the tuple that is visible to the

transaction.

CONCURRENCY CONTROL

LOGICAL TILES & INDEXES
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CONCURRENCY CONTROL

RECOVERY

The DBMS rebuilds all of the tables’ indexes
during recovery to ensure that they are

| Index | I TxnId I BeginCTS I EndCTS | PreV | | ID l SALARY I
consistent with the database.
101 = 1001 1004 = Tite 1101 | Tite |201
. . — - A-1 A-2

Recovery employs a variant of the canonical 122 Ly = i -
, 103 305 1002 o — | U 103 ] 203

ARIES recovery protocol that is adapted for 104
in-memory DBMSs. 105 - 1002 % = Tile [104 204
— 1002 1003 - B-1 105 205
Uncommitted changes made at the time of a = 100+ © o) |l_o il

crash are not propagated to the database.




Clustering and Greedy Algorithm are phases
of the two part Vertical Partitioning
Algorithm.

ON-LINE QUERY MONITORING
The goal is to determine which attributes
should be stored in the same physical tile in
the new tile group layout.

Done through the monitor selecting info
using the SELECT and WHERE clauses.
Statistics taken from a random subset of
queries to reduce overhead & allows for no
bias from frequently observed transactions.

LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

Algorithm 1 Vertical Partitioning Algorithm

Require: recent queries (), table 7', number of representative queries k
function UPDATE-LAYOUT(Q, T\ k)
# Stage I : Clustering algorithm
for all queries g appearing in Q do
for all representative queries r; associated with 7" do
if r; is closest to g then
TiT;+wW X (qQ-75)
end if
end for
end for
# Stage II : Greedy algorithm
Generate layout for 7" using r
end function




LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

Cluster plot

For each table T in the database, the
DBMS maintains statistics about the
recent queries Q that accessed it. For
each g € Q, the DBMS extracts its
metadata, such as the attributes it
accessed.
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Important attributes determined by
k-means clustering and the storage
layout of the table for these queries is
optimized if the DBMS can recognize

-2.5

these attributes. > 0 2 M
radius_mean




e For each query g, the clustering algorithm observes the
referenced attributes, and assigns it to the jth cluster,
whose mean representative query rj is the most similar to
g.

e The distance metric between two queries is defined as the
number of attributes which are accessed by one and
exactly one of the two queries divided by the number of
attributesinT.

e (Queries that access a lot of common attributes of T,
therefore, tend to belong to the same cluster. After
assigning the query to a cluster, it updates rj to reflect the

inclusion of the query g.
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LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

Cluster plot

radius_mean

cluster




LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

This algorithm iterates over the representative queries Algorithm 1 Vertical Partitioning Algorithm

function UPDATE-LAYOUT(Q, T, k)

associated clusters. For each cluster, the algorithm # Stage I : Clustering algorithm
. ’ for all queries g appearing in Q do
groups the attributes accessed by that cluster’s for all representative queries r; associated with T do

if r; is closest to g then

representative query together into a tile. It continues s W X (@)
J J J

this process until it assigns each attribute in the table de;““f
ena ior
to some tile. In this manner, the DBMS periodically end for
. # Stage 11 : Greedy algorithm
computes a layout for the table using the recent query Generate layout for T" using 7
end function

in the descending order based on the Weight of their Require: recent queries @, table T, number of representative queries k

statistics.




LAYOUT REORGANIZATION

DATA LAYOUT REORGANIZATION

Algorithm 1 Vertical Partitioning Algorithm

Require: recent queries @, table 7', number of representative queries k
function UPDATE-LAYOUT(Q, T, k)

An incremental approach.

Data is copied to a new layout, then a newly # Stage I : Clustering algorithm
for all queries g appearing in Q do
constructed tile group is swapped into the table. Does for all representative queries r; associated with " do
. . . if r; is closest to g then
not apply to transactional (hot) data, but to historical dri]f 1w X (-7
. . . en
(cold) data. Starts out as a tuple centric layout (similar .
end for

to row store), then into an OLAP (on-line analytical # Stage II : Greedy algorithm

processing, similar to column-store) optimized layout Generate layout for T using r
end function

from the greedy algorithm.
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The ADAPT Benchmark

Q1
Q2:
Qs3:
Qa:
Qs:

INSERT INTO R VALUES (ag.a:.... ,ap)
SELECT a;,as>,...,a; FROM R WHERE ag < 0
SELECT MAX(ai),...,MAX(ar) FROM R WHERE ag < &
SELECT a; + a2+ ...+ ar FROM R WHERE ag < 6
SELECE XS o ooy KBy ol ey O e

FROM R AS X, R AS Y WHERE X.a; < Y.q;




Analysis of Storage Models under Different
Projectivity
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Figure 7: Projectivity Measurements — The impact of the storage layout on the query processing time under different projectivity settings. The execution
engine runs the workload with different underlying storage managers on both the narrow and the wide table.
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Figure 8: Selectivity Measurements — The impact of the storage layout on the query processing time under different selectivity settings. The execution engine
runs the workload with different underlying storage managers on both the narrow and the wide table.
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slido

How understandable did you find
the article and what ideas
interested you from it?

@ Start presenting to display the poll results on this slide.
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Discussion Questions

e How understandable did you find the article and what ideas interested you from it?
e What real world examples of pipelines could benefit from this hybrid DBMS?

e Now let’s discuss... what are your questions!







