
Bridging the Archipelago between
Row-Stores and Column-Stores for

Hybrid Workloads

PRESENTATION BY
Adit Mehta

Amara Nwigwe
Satha Kitirattragarn

https://dl.acm.org/citation.cfm?id=2915231
https://dl.acm.org/citation.cfm?id=2915231
https://dl.acm.org/citation.cfm?id=2915231

- Usage of Database Management Systems (DBMSs) concerns processing raw data into

analytical insight. = “Hybrid Transactional-Analytical Processing (HTAP)”

- HTAP workloads are often segmented into two parts:
- 1 DBMS optimized for On-Line Transactional Processing (OLTP) workload

- 1 DBMS optimized for On-Line Analytical Processing (OLAP) workload

- Time - Inability for immediate data utilization at the application level

- Cost - Costly Administrative Overhead, estimated at ~50% of the total operating cost

Introduction - Problem

PROBLEMS

Introduction - Solution?

- → Single HTAP DBMS capable of both:
- Transactional (OLTP) benefits: high throughput + low latency transactions performed
- Analytical (OLAP) benefits: complex, long-running queries to operate on “hot”

(transactional, more recent, more frequented) and “cold” (historical, less recent, less
frequented) data

 ↳ MAIN CHALLENGE: Heavily-affected performance when performing transactional
(OLTP) and analytical (OLAP) processes concurrently

↳ CURRENT FIX: implement separate query execution engines for different
workloads

- OLTP execution engines process transactions for row-oriented data
- OLAP execution engines process analyses for column-oriented data

ONE SOLUTION

CHALLENGES WITH THE CURRENT FIX:

- Increase in undue DBMS complexity

- Worse performance with the required maintenance on additional overhead

- Only a limited range of queries possible

A BETTER SOLUTION?

The proposed “Flexible Storage Model”

Introduction - Better Solution?

Motivating
Illustration

TILE BASED ARCHITECTURE
TILE TUPLES / PHYSICAL TILES / TILE GROUPS

A set of tile tuples form a physical tile. The

collection of physical tiles is a tile group.

The physical tiles belonging to a tile group

contain the same number of tile tuples.

WHAT ARE THEY?

TILE BASED ARCHITECTURE
LOGICAL TILES

These are representative of values spread across a collection of physical tiles from
one or more tables. Abstracts hybrid layout specifics without affecting

performance.

WHAT ARE THEY?

TILE BASED ARCHITECTURE
LOGICAL TILES

TILE BASED ARCHITECTURE
LOGICAL TILE ALGEBRA

Bridge Operators
➔ Connect logical and physical tiles (using

table accessing methods)
◆ Sequential scan

● Makes a logical tile for every
tile group in the table

◆ Index scan
● Constructs one or more

logical tiles that contain
matching tuples (that match
predicate using index)

Metadata Operators
➔ Modifies data of operators, not the

data it represents
◆ Projection

● Modifies list of attributes to
remove those not needed in
the final result

◆ Selection
● Modifies metadata, marks

rows that don’t satisfy the
predicate as not part of the
physical tile

TILE BASED ARCHITECTURE
LOGICAL TILE ALGEBRA

Mutators
➔ Modify data stored in table

◆ Insert
◆ Delete
◆ Update

Pipeline Breakers
➔ Consume the logical tiles produced by

their children in the plan tree
➔ Block execution of upper level operators

while they wait for children’s output

TILE BASED ARCHITECTURE
LOGICAL TILE

BENEFITS?

❖ complexity is reduced
➢ due to abstraction
➢ operators need not be specialized for all storage layouts

❖ reduces interpretation overhead through vectorized
processing

❖ flexible materialization (can happen at any time)
❖ complex intermediate query execution is easier to process

CONCURRENCY CONTROL
LOGICAL TILE

Multi-version Concurrency control is implemented so OLAP (on-line
analytical processing) queries do not see the effects of transactions

that start after they begin and the readers should not block on
writers.

WHY?

CONCURRENCY CONTROL
LOGICAL TILES

Mutators
Insert, delete, update

CONCURRENCY CONTROL
LOGICAL TILES

Bridge Operators
sequential scan, index scan

CONCURRENCY CONTROL
LOGICAL TILES & INDEXES

An order-preserving in-memory index is used

(e.g., B+tree) for primary and secondary

indexes.

The key value is a logical location of the latest

version of a tuple.

An operator might encounter a version of the

tuple that is not visible to its current

transaction. When this occurs, it uses the PreV

field to traverse the version chain to find the

newest version of the tuple that is visible to the

transaction.

CONCURRENCY CONTROL
RECOVERY

The DBMS rebuilds all of the tables’ indexes

during recovery to ensure that they are

consistent with the database.

Recovery employs a variant of the canonical

ARIES recovery protocol that is adapted for

in-memory DBMSs.

Uncommitted changes made at the time of a

crash are not propagated to the database.

LAYOUT REORGANIZATION
CLUSTERING & GREEDY ALGORITHM

Clustering and Greedy Algorithm are phases
of the two part Vertical Partitioning

Algorithm.

ON-LINE QUERY MONITORING
The goal is to determine which attributes

should be stored in the same physical tile in
the new tile group layout.

Done through the monitor selecting info
using the SELECT and WHERE clauses.

Statistics taken from a random subset of
queries to reduce overhead & allows for no
bias from frequently observed transactions.

LAYOUT REORGANIZATION
CLUSTERING & GREEDY ALGORITHM

For each table T in the database, the

DBMS maintains statistics about the

recent queries Q that accessed it. For

each q ∈ Q, the DBMS extracts its

metadata, such as the attributes it

accessed.

Important attributes determined by
k-means clustering and the storage
layout of the table for these queries is
optimized if the DBMS can recognize
these attributes.

LAYOUT REORGANIZATION
CLUSTERING & GREEDY ALGORITHM

● For each query q, the clustering algorithm observes the

referenced attributes, and assigns it to the jth cluster,

whose mean representative query rj is the most similar to

q.

● The distance metric between two queries is defined as the

number of attributes which are accessed by one and

exactly one of the two queries divided by the number of

attributes in T .

● Queries that access a lot of common attributes of T ,

therefore, tend to belong to the same cluster. After

assigning the query to a cluster, it updates rj to reflect the

inclusion of the query q.

LAYOUT REORGANIZATION
CLUSTERING & GREEDY ALGORITHM

This algorithm iterates over the representative queries

in the descending order based on the weight of their

associated clusters. For each cluster, the algorithm

groups the attributes accessed by that cluster’s

representative query together into a tile. It continues

this process until it assigns each attribute in the table

to some tile. In this manner, the DBMS periodically

computes a layout for the table using the recent query

statistics.

LAYOUT REORGANIZATION
DATA LAYOUT REORGANIZATION

An incremental approach.

Data is copied to a new layout, then a newly

constructed tile group is swapped into the table. Does

not apply to transactional (hot) data, but to historical

(cold) data. Starts out as a tuple centric layout (similar

to row store), then into an OLAP (on-line analytical

processing, similar to column-store) optimized layout

from the greedy algorithm.

Does this paper support it’s claims?

5

Perfo
rm

 a se
nsit

ivi
ty

analys
is

on th
e

parameters
of t

he data re
organiza

tio
n

proce
ss

.

4

Exa
mined th

e im
pact

of t
he ta

ble’s

horiz
ontal fr

agmentatio
n on

perfo
rm

ance
.

3

Demonstr
ated th

at a
 FSM DBMS ca

n

co
nve

rge to
 an optim

al la
yo

ut f
or a

n

arbitr
ary

workload.

Analys
is

of i
mpact

of q
uery

projecti
vit

y a
nd se

lecti
vit

y s
etti

ngs.

21

Exe
cu

ted th
e w

orkload five
 tim

es a
nd

reporte
d th

e ave
rage exe

cu
tio

n tim
e.

YES!!

6

Compare so
me of t

heir d
esig

n ch
oice

s

against
the st

ate-o
f-t

he-art
adaptiv

e

sto
rage m

anager H
2O.

The ADAPT Benchmark

Analysis of Storage Models under Different
Projectivity

A Workload Aware Adaptation of the Earlier
Experiment

○

Immediate vs Incremental Reorganization

Next Steps:

● Setting up the DBMS so that it should automatically adjust Peloton knobs for the layout reorganization

process based on the HTAP workload.

● Investigate the design of a self-driving module within the DBMS that dynamically adjusts these knobs

to simplify the tuning process.

● Explore code generation and data compression techniques for optimizing query execution

How understandable did you find
the article and what ideas
interested you from it?

ⓘ Start presenting to display the poll results on this slide.

https://www.sli.do/features-google-slides?interaction-type=T3BlblRleHQ%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFKZkFlbnVjVGJmeTVYZnAtNGJlSHlmOTRic2VHQ0xrM3hlUDdNVzNmYlNBIiwic2xpZGVJZCI6IlNMSURFU19BUEk5NTkwMjQzMzlfMCJ9

Discussion Questions

● How understandable did you find the article and what ideas interested you from it?

● What real world examples of pipelines could benefit from this hybrid DBMS?

● Now let’s discuss… what are your questions!

Thank you for listening!

