Bridging the Archipelago between
Row-5Stores and Column-Stores for

Hybrid Workloads

PRESENTATION BY
Adit Mehta
Amara Nwigwe
Satha Kitirattragarn

https://dl.acm.org/citation.cfm?id=2915231
https://dl.acm.org/citation.cfm?id=2915231
https://dl.acm.org/citation.cfm?id=2915231

Introduction - Problem

- Usage of Database Management Systems (DBMSs) concerns processing raw data into
analytical insight. = “Hybrid Transactional-Analytical Processing (HTAP)”

- HTAP workloads are often segmented into two parts:
- 1 DBMS optimized for On-Line Transactional Processing (OLTP) workload
- 1 DBMS optimized for On-Line Analytical Processing (OLAP) workload

PROBLEMS

- Time - Inability for immediate data utilization at the application level
- Cost - Costly Administrative Overhead, estimated at ~“50% of the total operating cost

Introduction - Solution?

ONE SOLUTION — Single HTAP DBMS capable of both:

- Transactional (OLTP) benefits: high throughput + low latency transactions performed

- Analytical (OLAP) benefits: complex, long-running queries to operate on “hot”
(transactional, more recent, more frequented) and “cold” (historical, less recent, less
frequented) data

L MAIN CHALLENGE: Heavily-affected performance when performing transactional
(OLTP) and analytical (OLAP) processes concurrently

L CURRENT FIX: implement separate query execution engines for different
workloads

- OLTP execution engines process transactions for row-oriented data
- OLAP execution engines process analyses for column-oriented data

Introduction - Better Solution?

CHALLENGES WITH THE CURRENT FIX:

- Increase in undue DBMS complexity
- Worse performance with the required maintenance on additional overhead
- Only a limited range of queries possible

A BETTER SOLUTION?

The proposed “Flexible Storage Model”

[©

| mace |

NAME

PRICE

| Dpata

101

Motivating
Illustration

102
103
104

201
202
203
204

ITEM-101
ITEM-102
ITEM-103
ITEM-104

10
20
30
40

DATA-101
DATA-102
DATA-103
DATA-104

(a) OLTP-oriented N-ary Storage Model (NSM)

[o | macemm | w~ame | price [pata |
101 201 ITEM-101 10 DATA-101
102 202 ITEM-102 20 DATA-102
103 203 ITEM-103 30 DATA-103
104 204 ITEM-104 40 DATA-104

(b) OLAP-oriented Decomposition Storage Model (DSM)

[o | macem | name | price | pata |
101 201 ITEM-101 10 DATA-101
102 202 ITEM-102 20 DATA-102
103 203 ITEM-103 30 DATA-103
104 204 ITEM-104 40 DATA-104

(c) HTAP-oriented Flexible Storage Model (FSM)

Figure 1: Storage Models — Different table storage layouts work well for
OLTP, OLAP, and HTAP workloads. The different colored regions indicate
the data that the DBMS stores contiguously.

TILE BASED ARCHITECTURE

TILE TUPLES / PHYSICAL TILES / TILE GROUPS

[o | macem | name | price | pata | WHAT ARE THEY?

Tite J101 201 ITEM-101 | Tile |10 DATA-101 Til . . .

ol = rrEM_m| A2 |2° ——— } s A set of tile tuples form a physical tile. The

e = Lt = CallaalE 2 collection of physical tiles is a tile group.
Tile [TTEM-104 20| rite [paTA-104 Tile The physical tiles belonging to a tile group

B-1 |105 205| B-2 |mEM-105 50| B-3 |DATA-105 Group . .

¥y | N 6 DATA106 B contain the same number of tile tuples.

Tile 107 207 ITEM-107 70 DATA-107
c1 |os 208 ITEM-108 80 DATA-108 } Tile

Group
109 209 ITEM-109 90 DATA-109
ITEM-110 DATA-110

Tile |104 204

TILE BASED ARCHITECTURE

LOGICAL TILES

WHAT ARE THEY?

These are representative of values spread across a collection of physical tiles from
one or more tables. Abstracts hybrid layout specifics without affecting
performance.

ID NAME SALARY CITY STATE

8 rcr RE ren s

TILE BASED ARCHITECTURE

LOGICAL TILES

Logical
Tile
Materialized
Tile

TILE BASED ARCHITECTURE

LOGICAL TILE ALGEBRA

Bridge Operators Metadata Operators
=> Connect logical and physical tiles (using => Modifies data of operators, not the
table accessing methods) data it represents
€ Sequential scan € Projection
e Makes a logical tile for every e Modifies list of attributes to
tile group in the table remove those not needed in
€ Indexscan the final result
® (Constructs one or more € Selection
logical tiles that contain e Modifies metadata, marks
matching tuples (that match rows that don’t satisfy the
predicate using index) predicate as not part of the
physical tile

Logical

Tile |101 201 ITEM-101 | Tile |10 DATA-101
A1 102 202 ITEM-102 | A2 |20 DATA-102
[103 203 ITEM-103][30 DATA-103

1 R N

. - TILE A-1 ATTR 1 TILE A-1 ATTR 3
Logical Tile 4
i X TILE A-1 ATTR 2 TILE A-2 ATTR 1 TILEA-2 ATTR 1
1 1 il
2 1 2
3 1 2
Y Materialization
Materialized Tile | 101 201 ITEM-101 10 10
Y 102 202 ITEM-101 10 20
[103 203 ITEM-101 10 20

TILE BASED ARCHITECTURE

LOGICAL TILE ALGEBRA

SELECT R.c, SUM(S.z)
Mutators FROM R JOIN S ON R.b = S.y
=> Modify data stored in table WHERE R.a = 1 AND S.x = 2
GROUP BY R.c;
¢ Insert - T O
aterialize, "
& Delete | |
¢ U pdate I eisum(z) Aggregate, { LT, C}, { LT }
| |
.. MR b=5.y Join, { LT, LT }, { LT }
Pipeline Breakers A S |
=> Consume the logical tiles produced by Tb,c Ty,2 Projection, { LT }, { LT }

=2 Sequential Scan, { T, P}, { LT }

Table

their children in the plan tree |
=> Block execution of upper level operators |
while they wait for children’s output

TILE BASED ARCHITECTURE

LOGICAL TILE

BENEFITS?

% complexity is reduced -,
> due to abstraction mmm
> operators need not be specialized for all storage layouts

** reduces interpretation overhead through vectorized
processing

% flexible materialization (can happen at any time)

complex intermediate query execution is easier to process

CONCURRENCY CONTROL

LOGICAL TILE
WHY?

Multi-version Concurrency control is implemented so OLAP (on-line
analytical processing) queries do not see the effects of transactions
that start after they begin and the readers should not block on
writers.

e Txnld: A placeholder for the identifier of the transaction that
currently holds a latch on the tuple.

e BeginCTS: The commit timestamp from which the tuple be-
comes visible.

e EndCTS: The commit timestamp after which the tuple ceases
to be visible.

PreV: Reference to the previous version, if any, of the tuple.

CONCURRENCY CONTROL

LOGICAL TILES

BeginCTS

EndCTS PreV

ID

SALARY

101
102

103
104
105

— 1001 1004 -

— 1001 o) -

305 1002 (o0 - 103 203

— 1002 o) — Tile 104 204

- 1002 1003 — B-1 |105 205

= 1004 o0 [1, 1 101 301
Mutators

Insert, delete, update

CONCURRENCY CONTROL

LOGICAL TILES

BeginCTS

EndCTS PreV

ID

SALARY

101
102

103
104
105

= 1001 1004 =
— 1001 o0 =
305 1002 00 = 103 203
= 1002 o0 = Tile 104 204
— 1002 1003 —_ B-1 105 205
— 1004 o [1,1] 101 301

Bridge Operators

sequential scan, index scan

An order-preserving in-memory index is used

(e.g., B+tree) for primary and secondary
indexes.

The key value is a logical location of the latest
version of a tuple.

An operator might encounter a version of the
tuple that is not visible to its current
transaction. When this occurs, it uses the PreV
field to traverse the version chain to find the

newest version of the tuple that is visible to the

transaction.

CONCURRENCY CONTROL

LOGICAL TILES & INDEXES

| mdex | | Txn1d | Begincts | endcrs | prev | |

101
102
103
104
105

305

1001
1001
1002

Tile

101

. 102

Tile

(L

103

201
202
203

1002
1002
1004

Tile
B-1

EXAMPLE: B+-TREE

104
105
101

204
205
301

13[17] 19

Y

e

CONCURRENCY CONTROL

RECOVERY

The DBMS rebuilds all of the tables’ indexes
during recovery to ensure that they are

| Index | I TxnId I BeginCTS I EndCTS | PreV | | ID l SALARY I
consistent with the database.
101 = 1001 1004 = Tite 1101 | Tite |201
. . — - A-1 A-2

Recovery employs a variant of the canonical 122 Ly = i -
, 103 305 1002 o — | U 103] 203

ARIES recovery protocol that is adapted for 104
in-memory DBMSs. 105 - 1002 % = Tile [104 204
— 1002 1003 - B-1 105 205
Uncommitted changes made at the time of a = 100+ © o) |l_o il

crash are not propagated to the database.

Clustering and Greedy Algorithm are phases
of the two part Vertical Partitioning
Algorithm.

ON-LINE QUERY MONITORING
The goal is to determine which attributes
should be stored in the same physical tile in
the new tile group layout.

Done through the monitor selecting info
using the SELECT and WHERE clauses.
Statistics taken from a random subset of
queries to reduce overhead & allows for no
bias from frequently observed transactions.

LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

Algorithm 1 Vertical Partitioning Algorithm

Require: recent queries (), table 7', number of representative queries k
function UPDATE-LAYOUT(Q, T\ k)
Stage I : Clustering algorithm
for all queries g appearing in Q do
for all representative queries r; associated with 7" do
if r; is closest to g then
TiT;+wW X (qQ-75)
end if
end for
end for
Stage II : Greedy algorithm
Generate layout for 7" using r
end function

LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

Cluster plot

For each table T in the database, the
DBMS maintains statistics about the
recent queries Q that accessed it. For
each g € Q, the DBMS extracts its
metadata, such as the attributes it
accessed.

N
()

texture_mean

o
=}
\

Important attributes determined by
k-means clustering and the storage
layout of the table for these queries is
optimized if the DBMS can recognize

-2.5

these attributes. > 0 2 M
radius_mean

e For each query g, the clustering algorithm observes the
referenced attributes, and assigns it to the jth cluster,
whose mean representative query rj is the most similar to
g.

e The distance metric between two queries is defined as the
number of attributes which are accessed by one and
exactly one of the two queries divided by the number of
attributesinT.

e (Queries that access a lot of common attributes of T,
therefore, tend to belong to the same cluster. After
assigning the query to a cluster, it updates rj to reflect the

inclusion of the query g.

N
3]
L

texture_mean

o
(=)
L

251 —

LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

Cluster plot

radius_mean

cluster

LAYOUT REORGANIZATION

CLUSTERING & GREEDY ALGORITHM

This algorithm iterates over the representative queries Algorithm 1 Vertical Partitioning Algorithm

function UPDATE-LAYOUT(Q, T, k)

associated clusters. For each cluster, the algorithm # Stage I : Clustering algorithm
. ’ for all queries g appearing in Q do
groups the attributes accessed by that cluster’s for all representative queries r; associated with T do

if r; is closest to g then

representative query together into a tile. It continues s W X (@)
J J J

this process until it assigns each attribute in the table de;““f
ena ior
to some tile. In this manner, the DBMS periodically end for
. # Stage 11 : Greedy algorithm
computes a layout for the table using the recent query Generate layout for T" using 7
end function

in the descending order based on the Weight of their Require: recent queries @, table T, number of representative queries k

statistics.

LAYOUT REORGANIZATION

DATA LAYOUT REORGANIZATION

Algorithm 1 Vertical Partitioning Algorithm

Require: recent queries @, table 7', number of representative queries k
function UPDATE-LAYOUT(Q, T, k)

An incremental approach.

Data is copied to a new layout, then a newly # Stage I : Clustering algorithm
for all queries g appearing in Q do
constructed tile group is swapped into the table. Does for all representative queries r; associated with " do
. . . if r; is closest to g then
not apply to transactional (hot) data, but to historical dri]f 1w X (-7
. . . en
(cold) data. Starts out as a tuple centric layout (similar .
end for

to row store), then into an OLAP (on-line analytical # Stage II : Greedy algorithm

processing, similar to column-store) optimized layout Generate layout for T using r
end function

from the greedy algorithm.

s claims?

9

4+
—
@)
Q.
Q.
>
0p)
—
)
Q.
O
Q
ol
L
)
0p)
)
O
)

The ADAPT Benchmark

Q1
Q2:
Qs3:
Qa:
Qs:

INSERT INTO R VALUES (ag.a:.... ,ap)
SELECT a;,as>,...,a; FROM R WHERE ag < 0
SELECT MAX(ai),...,MAX(ar) FROM R WHERE ag < &
SELECT a; + a2+ ...+ ar FROM R WHERE ag < 6
SELECE XS o ooy KBy ol ey O e

FROM R AS X, R AS Y WHERE X.a; < Y.q;

Analysis of Storage Models under Different
Projectivity

Execution time (s)

Execution time (s)

900
450
0.01 01 05
Fraction of Attributes Projected
(a) Scan, Narrow, Read Only
4000
2000
001

X 01 05
Fraction of Attributes Projected

(e) Aggregate, Narrow, Read Only

| Storage Models : 1 NSM DSM RK\\\\ FSM

))

£ £

s 2250 s 4500

i E

8 7 8 ',“ ot

'ﬁ o 0.0t 01 05 lﬁ ¢ 0.01 ; 0. 05
Fraction of Attributes Projected Fraction of Attributes Projected

Execution time (s)

(b) Scan, Narrow, Hybrid

2
3

'y
=]
=]
=)

o

= 0.01 T) 05
Fraction of Attributes Projected

(f) Aggregate, Narrow, Hybrid

(¢) Scan, Wide, Read Only

g

Execution time (s)

‘001 : 05
Fraction of Attributes Projected

(g) Aggregate, Wide, Read Only

g

Execution time (s)

=)

001 01 05
Fraction of Attributes Projected

(d) Scan, Wide, Hybrid

;

Execution time (s)

001 01
Fraction of Attributes Projected

(h) Aggregate, Wide, Hybrid

Figure 7: Projectivity Measurements — The impact of the storage layout on the query processing time under different projectivity settings. The execution
engine runs the workload with different underlying storage managers on both the narrow and the wide table.

&

B

Execution time (s)

8

A Workload Aware Adaptation of the Earlier
Experiment

g B

g

Execution time (s)

Storage Models : @====@ NSM =@ DSM V-V FSM |

5 % 3800 — @ 2000 & 38000

A AR S———
/v g o .E £
34004 1200 L

/v/e/v £ e — S £ g i
Z= g | w g o 8 ¢—9—%¢ g—9
0.2 04 06 08 10 ln 0 02 04 06 08 10 In 40 02 04 06 038 10 w 26000 02 04 06 08 10

of Tuples Fraction of Tuples Sel d Fraction of Tuples Selected Fraction of Tuples Selected

(a) Scan, Narrow, Read Only

(b) Scan, Narrow, Hybrid

§

(¢) Scan, Wide, Read Only

g

Execution time (s)

g

& 00— ——
°
g B"r"e/‘ °
S - v
k- v
3 v
v
& 3400
02 04 08 08 10 02 04 06 08 10

of Tuples d

(e) Aggregate, Narrow, Read Only

of Tuples Si

(f) Aggregate, Narrow, Hybrid

5

(d) Scan, Wide, Hybrid

3 2 ¥ ".a__-i"ﬂ
2 =]
= g e
3) s 36000 s v
_ = e
% 3 v ”
5 g -
02 04 08 08 10 i 26000 02 Dfl 08 078 10
Fraction of Tuples Selected Fraction of Tuples Selected

(g) Aggregate, Wide, Read Only

(h) Aggregate, Wide, Hybrid

Figure 8: Selectivity Measurements — The impact of the storage layout on the query processing time under different selectivity settings. The execution engine
runs the workload with different underlying storage managers on both the narrow and the wide table.

Execution time (s)

100000

Immediate vs Incremental Reorganization

Reorganization Type

10000 |2~ Immediate, ©-@ Incremental

1000 |- |

2

25 50 75
Query Sequence

100

«iuN
- ol oy
S =y ‘l
Vel N e
11 3
Lt oes -
] t"‘ -’.‘j{:'\) . 8 l
‘ 1\ = 3 -
'y

SRRy

LS -
ad £ 335 3T LT TR

O RUTLLC Sl

.

-

slido

How understandable did you find
the article and what ideas
interested you from it?

@ Start presenting to display the poll results on this slide.

https://www.sli.do/features-google-slides?interaction-type=T3BlblRleHQ%3D
https://www.sli.do/features-google-slides?payload=eyJwcmVzZW50YXRpb25JZCI6IjFKZkFlbnVjVGJmeTVYZnAtNGJlSHlmOTRic2VHQ0xrM3hlUDdNVzNmYlNBIiwic2xpZGVJZCI6IlNMSURFU19BUEk5NTkwMjQzMzlfMCJ9

Discussion Questions

e How understandable did you find the article and what ideas interested you from it?
e What real world examples of pipelines could benefit from this hybrid DBMS?

e Now let’s discuss... what are your questions!

