
Persistent B+-Tree in 
Non-Volatile Main Memory

Richard Andreas, Hantian Liu, 
Jingyu Su, Xingkun Yin



Problem proposed
Non Volatile Memory Data Structure



Problem proposed
Non Volatile Memory Data Structure

Bridge



Background
Non Volatile Memory

- do not need power to retain data
- enable smaller feature size

Type

- Phase Change Memory (PCM)
- Ferroelectric RAM (F-RAM)
- Magnetoresistive RAM (MRAM)



Background
Growth in main memory



Background
B+ Tree



Background



Challenge
Inconsistent 



Tools
x86 instructions

- clflush
- mfence



Tools
x86 instructions

- clflush
- mfence

clflush Go to 
memory



Tools
x86 instructions

- clflush
- mfence



Challenge



Existing Solutions

● Follows 2 traditional Principles:
○ Logging

○ Shadowing



Logging
● Records REDO and UNDO information, for every update, in a log

● Log: an ordered list of REDO/UNDO actions
○ Contains information of each update

● Ensures the database fulfills the atomicity principle



Shadowing
● The process of creating multiple copies of data.

● Ensures that the original data is not being updated till the very end to 
ensure database is durable



Undo-Redo Logging
Divide memory into 2 parts:

● Persistent: Holds persistent tree nodes
● Volatile: stores the buffer pool

To protect in-place NVM writes requires 
undo-redo logging

● Requires clflush and mfence to ensure 
log content is stable before performing 
actual write



Undo-Redo Logging
Divide memory into 2 parts:

● Persistent: Holds persistent tree nodes
● Volatile: stores the buffer pool

To protect in-place NVM writes requires 
undo-redo logging

● Requires clflush and mfence to ensure 
log content is stable before performing 
actual write



Undo-Redo Logging
Divide memory into 2 parts:

● Persistent: Holds persistent tree nodes
● Volatile: stores the buffer pool

To protect in-place NVM writes requires 
undo-redo logging

● Requires clflush and mfence to ensure 
log content is stable before performing 
actual write



Logging Continued
● Only applicable if a newly written 

value is not to be accessed again 
before commit

● Re-reading the newly written value 
before commit will cause an error.



Logging Continued
● Only applicable if a newly written 

value is not to be accessed again 
before commit

● Re-reading the newly written value 
before commit will cause an error.



Shadowing
● Short-Circuit Shadowing

○ Taking advantage of the 8 byte 
atomic write feature in NVM.

○ Automatically modify the leaf node 
pointer in the updated node’s parent.

○ A single 8 byte pointer points to 
newly created node copy



Shadowing
● Short-Circuit Shadowing

○ Taking advantage of the 8 byte 
atomic write feature in NVM.

○ Automatically modify the leaf node 
pointer in the updated node’s parent.

○ A single 8 byte pointer points to 
newly created node copy



Write Atomic B+-Trees

Design Goals:

● Atomic write to commit all changes

● Minimize the movement of index entries

● Good search performance



wB+ - Tree Structures
● Introduced a small indirection array to a 

bitmap-only unsorted node.

● Slot+Bitmap nodes contain both a bitmap 
and indirection slot array.

● Combine slot-only nodes, slot+bitmap 
nodes, bitmap-only leaf nodes to form 3 
wB+ - Tree structures



Insertion (Slot only)

3 1 2 0

8 5 7

Insert position in slot array: 1

Insert: 6

Unused entry offset: 3

2 03 2 04 1 3 2 0

6



Insertion (Slot only)

4 1 3 2 0

8 5 7 6

Insert position in slot array: 1

Insert: 6

Unused entry offset: 3



Insertion (Slot + bitmap)

3 1 2 0
Insert: 6

8 5 7

Bitmap: 1 1 1 0 1



Insertion (Slot + bitmap)

3 1 2 0
Insert: 6

8 5 7

Insert position in slot array: 1
Unused entry offset: 3

Bitmap: 1 1 1 0 11 1 1 0 0

6



Insertion (Slot + bitmap)

3 1 2 0
Insert: 6

8 5 7 6

Insert position in slot array: 1
Unused entry offset: 3

Bitmap: 1 1 1 0 0



Insertion (Slot + bitmap)

4 1 3 2 0
Insert: 6

8 5 7 6

Insert position in slot array: 1

Unused entry offset: 3

Bitmap: 1 1 1 0 01 1 1 1 1



Insertion - Node Split

0

0 0 0 0 0

4 1 3 2 0

8 5 7 6

1 1 1 1 1

Insert 9

1 1 1 1 0

2 2 0

8 79

2 2 0 1

1 1 1 0 10 1 0 1 1

4 1 3



Deletion
Deletion:

● Does not move data around
● Modify slot array and/or bitmap to reflect deletion

Bitmap: 11111

4 1 3 2 0

Delete: 7

8 5 7 6

Delete offset: 2

Bitmap: 11110

3 1 3 0

Bitmap: 11011



Search
Search:

● Apply binary search on slot array
● Stop binary search when range < 8 slots for lower overhead

left right left right



Variable Sized Key
Solution:

● Store 8-byte pointers to key

Disadvantage:

● Key pointer dereference overhead
● Larger keys takes longer to retrieve & process

(Bitmap)

Slot array

Data entries

Memory

Return key



Comparison With Previous Solutions



Evaluation
Experiment Setup

Computer for experiment

1. B+ trees implementations: 

9 different trees

2. Memcached Implementation

3. B+ tree workload



Simulation Modeling PCM



Simulation Modeling PCM



Real Machine Experiments Modeling Fast DRAM-Like NVM



Real Machine Experiments for Trees with String Keys



Real-Machine Memcached Performance



Conclusion
Logging and shadowing incurs high overhead due to NVM writes & CL 
flushes.

The factors affecting performance have different weights for different NVM 
technologies.

wB+-Trees significantly improve the insertion and deletion performance 
while achieving good search performance.



Thank you!


