
Pump Up the Volume: Processing Large Data on GPUs with Fast 
Interconnects

Xinyun Cao, Randy Collado-Cedeno, Meng-Heng Lee, Shaolin Xie



Goal: Scale GPU-based data processing to arbitrary data size



Three Fundamental Limitations

● Low interconnect bandwidth

● Small GPU memory capacity

● Coarse-grained cooperation of CPU and GPU



Solutions

● New fast Interconnects, mainly NVLink 2.0

● New co-processing strategy



PCI-e 3.0

Transfer Primitives

● Memory-Mapped I/O (MMIO)

● Direct Memory Access (DMA)





NVLink 2.0
● Mesh Topology

● MMIO and DMA

● Allows direct access to pageable CPU memory 



No-Partitioning Hash Join 

● Loading base relations from main memory 
requires high bandwidth

● Scaling the hash table beyond GPU 
memory requires low latency

● Sharing the hash table between two or more 
processors requires cache-coherence



How does NVLink Compare?

*
●GPU Interconnects

○PCI-e 3.0 (1)
○NVLink 2.0 (2)

●CPU Interconnects
○Intel Xeon Ultra Path Interconnect (UPI) (3)
○IBM POWER9 X-Bus (4)

●CPU Memory
○Intel XEON (5)
○IBM POWER9 (6)

●GPU Memory
○Nvidia V100 (7)



Efficient Data Transfer Between CPU and GPU

● pageable copy - transfers data directly from any location 
in pageable memory via the CUDA API’s 
(cudaMemcpyAsync)

● pinned copy - similar to pageable copy except data is 
constrained to pinned memory

● staged copy - copy chunk of data from pageable 
memory into pinned memory buffer

● dynamic pinning - pinning pre-existing pageable 
memory ad hoc - avoids copying operation in CPU 
memory

● UM Prefetch - prefetch region of unified memory if we 
know data access pattern beforehand

Push based transfer methods



● Unified Memory Migration - migrate memory pages 
to GPU on page access. Database MUST explicitly 
allocate Unified Memory to store data to utilize this.

● Zero-Copy - use Unified Virtual Addressing to directly 
access CPU’s pinned memory during GPU execution

● Coherence - new method offered by NVLink 2.0. GPU 
can access pageable CPU directly

Efficient Data Transfer Between CPU and GPU
Pull based transfer methods



Overcome L2: Small GPU memory capacity



Tool: No-Partitioning Hash Join

● Build phase:
- Build the shared hash table with build-side 

relation R

Random memory access - requires low-latency 
interconnect to access the hash table in CPU, or 
large enough GPU memory to store the table

● Probe phase:
- Probe the table with tuples from probe-side 

relation S

High demand on interconnects’ bandwidth



Non-scalable Baseline Join vs Probe-side Scalable Join

● Copy build-side relation R to GPU
● Build hash table in GPU
● Evict R
● Copy probe-side relation S to GPU
● Probe the hash table and emit the join results

    –      Limited by GPU’s memory capacity

● Pull R tuples on-demand  from CPU 
● Build hash table in GPU
● Pull S tuples on-demand from CPU
● Probe the hash table 

* Uses pull-based  transfer with 
Coherence method instead of Zero-copy 
method to enable GPU to access any 
memory location in pageable memory 
(directly access CPU)

Probe-side Scalable JoinBaseline Join



Scaling the Build-side of the Join

● Pull R tuples on-demand  from CPU memory 
● Build hash table in GPU
● Store the hash table in CPU
● Pull S tuples on-demand from CPU
● Probe the hash table 

+ Not constrained by GPU memory



New Design: Hybrid Hash Table

Replaces hash table in CPU memory:

● Data in CPU memory and hash table spills 

from GPU memory into CPU memory

● Use virtual memory to combine CPU and 

GPU into single, continuous array - fast 

interconnect integrate the GPU into a 

system-wide address space

● Map physical CPU pages next to GPU 

pages in the address space

Advantages:

+ Access performance degrades gracefully 

when the hash table’s size is increased

+ Easily integrated into existing databases - 

hash join algorithms remains the same 



Algorithm: Allocating Hybrid Hash Table 

ALGORITHM

By default: 

if hash table is smaller than available GPU memory, 
allocate the entire hash table in GPU memory

Else: 

allocate in the CPU that is the nearest to the GPU; if 
CPU doesn’t have sufficient memory, search for the 
next-nearest CPU until we fit the entire hash table



Overcome L3: Coarse-grained Cooperation of 
CPU and GPU



Task Scheduling
Task scheduler

 - ensure all processors deliver their highest throughput

CPU-oriented approach for GPUs:

- All cores work concurrently on the same hash table
- Cores request fixed sized morsels from a central dispatcher
- Dispatches one morsel at a time

CPU+GPU heterogeneous scheduling approach:

● Dispatch batches of morsels to the GPU 
- GPU has higher processing rate but also higher latency in scheduling work
- Amortizing the latency of launching a GPU kernel over more data



Hash Table Placement

One globally shared hash table:

● Same as build-side scaling method - 

stores hash table in CPU

● Why?

- Avoid slowing down CPU processing 

through remote GPU memory accesses

- GPU accesses CPU much faster than CPU 

accessing GPU

Multiple per-processor hash tables(for 
small hash tables):

● One processor builds the hash table 
in local processor memory 

● Copy the table to all other 
processors

● Execute probe phase using 
heterogeneous scheduling strategy

Het Strategy GPU+Het Strategy



Multiple GPU Hash Table Placement

For large hash tables, we distribute the table by interleaving the pages over all GPUs

- Multi-GPU systems can distribute the hash tables over multiple GPUs

Advantages:

+ Avoids computational skew

+ Frees CPU memory bandwidth by loading the base relation

+ Utilizes the full bi-directional bandwidth of fast interconnects vs uni-directional bandwidth 

in Het Strategy



Hash Table Placement Strategy



Evaluation and Experiments



Measurements are conducted 
on 4-byte read accesses on 1 
GiB of data.



Evaluation & Experiments: Memory Access Throughput 
● NVLink 2.0 is assessed by conducting sequential and random 4-byte 

memory reads on 1GiB of data and measuring the effective bandwidth 
versus other system interconnects such as Intel UPI and IBM XPower 
(CPU-to-CPU) and PCI-e 3.0 (CPU-to-GPU)

● Results showed a 5x increase in bandwidth vs. PCI-e 3.0 in sequential 
workloads, and 2x faster native CPU interconnects.

● In random workloads, NVLink 2.0 showed a 14x increase in bandwidth 
compared to PCI-e 3.0, and a max of 35% improvement over native CPU 
interconnects



Throughput measured as (|R| + |S|) / runtime



● 8 distinct methods of data transfer between CPU and GPU were 
determined by the authors, ranging from fetching pages directly 
from the CPU memory to preemptive memory moves

● NVLink 2.0 is proven to drastically increase throughput with all 
transfer methods tested, except for access methods based on 
Unified Memory

○ It is thought that this discrepancy might be due to an 
unoptimized driver in IBM’s Power9 architecture.

Evaluation & Experiments: Cache-Coherence 





Evaluation & Experiments: Join Performance

● Join performance was measured considering relation locality and 
hash-table locality, as so to measure the effects of multiple layers of 
indirection on NVLink 2.0.

● Both figures show that the majority of the loss of throughput comes from 
the transition from 0 interconnect hops to 1, remaining stable with little 
relative performance loss as the number of interconnect hops increases.

● This is due to the lower throughput of the X-Bus interconnect, creating a 
bottleneck, showing the stability of NVLink 2.0 over multiple hops.



Conclusions

Fast interconnects integrate GPUs tightly with CPUs and significantly reduce the data 

transfer bottleneck

With fast interconnects, GPU acceleration becomes an attractive scale-up alternative that 

promises large speedups for databases.



Technical Question:

What are the disadvantages of current interconnect and the benefits of 

NVLink 2.0 besides speed?


