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Evolution of Data Processing

Infrastructure 
as a Service

● Bare computing 
resources. 

● Starts a set of 
resources for the 
duration of a single 
job. 

● Scheduling jobs 
onto resources that 
are kept running.

● Cloud is used as a rented 
computing infrastructure.

● Elasticity can lead to a lower 
total cost than owned 
infrastructure, limited by how 
fast the infrastructure can be 
started and stopped, and 
services migrated

Platform as 
a Service

Software as a 
Service

● Customers do not 
rent infrastructure 
per se but the use 
of a given software 
functionality. Query as a 

Service

● Usage based 
pricing models

● Amazon Athena, 
BigQuery. 

Function as a 
Service

● Way to implement 
serverless 
computing

● No need to install, 
operate, and 
manage a server 
(infrastructure) to 
get computations 
done. 



Comparison of cloud Architectures
Workload: Scan 1 TB from cloud storage



Goals of the paper

● Identify the technical limitations of a concrete implementation of FaaS, AWS 
Lambda; 

● Propose suitable solutions to the limitations that do not fundamentally reduce their 
economic advantage, i.e., solutions that require only serverless components;

● Clarify the use cases in which the cost model behind Lambdas makes sense.
● Design a number of data processing components that accommodate the existing 

limitations of serverless cloud infrastructure to build Lambada.



Contributions

● Characterize interactive analytics on cold data as the sweet spot for using FaaS.
● Show that AWS Lambda currently exposes a small amount of intra-function parallelism
● Identify the process of invoking a large number of functions naively as incompatible with the 

interactivity requirement 
● effect of the input block size on the performance and monetary cost of reading data from cloud 

storage 
● characterizing the competitiveness of FaaS in this domain.
● Design a purely serverless exchange operator that overcomes the rate limit of cloud storage



Suitable Cloud Infrastructure

● Use other cloud services to complement them.
● These services should not incur any cost for idle infrastructure
● Amazon offers AWS Lambda, AWS Fargate, and Amazon EC2 to run code in a function, a 

container, and a virtual machine
● Only AWS Lambda has low enough start-up times for interactive analytics. 
● For storage, Amazon offers DynamoDB and S3, which both scale to zero if used for temporary data 

during query execution. 
● Amazon SQS and AWS Step Functions



Architecture Overview

















Data parallel query plans

● Queries are written in a thin Python front-end and go through a series of 
translations that transform it into an executable form. 

● A query plan in CVM is divided into scopes, each of which may run in a different 
target platform. 

● Most operators in a typical plan of Lambada run in a serverless scope
● However, queries may also contain small scopes running on the driver



Serverless workers

● The serverless workers run as a function in AWS Lambda, which is set up at installation time. 
● Consists of an event handler,  a “dependency layer” and some metadata 
● Dependency layer contains the same execution framework that also runs on the driver and an event 

handler as a wrapper around it implemented in Python. 
● Event handler extracts the ID of the worker, the query plan fragment, and its input from the 

invocation parameters of the function and forwards them to the execution framework. 
● When the execution engine finishes its computation, the handler forwards its results to the driver.
● If an error occurs or the computation finished successfully, the handler posts a corresponding 

message into a result queue in SQS, from which the driver polls until it has heard back from all 
workers.



System components for Serverless Analytics

● Hard quotas and limits from the service-level agreements (SLAs) of the cloud 
provider such as a limit on the request rate to S3, 

● Execution speed under the given constraints (from service limits or from de-facto 
performance of a resource)

● Usage-based cost of the various serverless services, such those from the running time 
of the serverless workers but also from the number of requests to the various systems.



Limits of Sequential Invocation



Lambada Two-level Invocation

Every first generation worker works in a three phase 
timeline:

● The time the driver took before it initiated their 
invocation (namely, to launch all previous workers), 

● The time their invocation took, i.e., the time between 
their invocation was initiated and they were actually 
running, and 

● The time they took to do the second- generation 
invocations.



Network Characteristics: Large Files

● There is a very stable limit of about 90 
MiB/s per worker.

● Workers of virtually any size have fast 
enough network to achieve this limit.

● Only workers with less than 1 GB of main 
memory see a slightly lower ingress 
bandwidth. 

● Using more network connections does 
not significantly change the overall 
bandwidth.



Network Characteristics: Small Files

● Workers with large amounts of memory observe 
a much higher network bandwidth, 
occasionally reaching almost 300 MiB/s. 

● This is only the case if they use several network 
connections at the same time.

● It is observed that the time span during which the 
burst may exceed the target is a small number 
of seconds. 

● In order to maximize performance for short-
running scans, we thus need to use multiple 
concurrent connections.



Impact of Memory size



Lambada Cloud Native Scan



Exchange in Joins, Sorting and Grouping

● The exchange operator transfers its input among the workers such that all tuples 
belonging to the same partition (according to some partitioning criteria) end up at 
the same worker. 

● Joins, sorting, and grouping can be executed in parallel with the help of one or more 
exchange operators; no further operator with communication logic is required

● The proposed operator at the same time necessary and sufficient for data-parallel 
processing on serverless workers.



Basic Exchange Operator



Lambada Multi Level Exchange



Complexity and Cost Analysis



Dataset and Methodology 

● Most experiments use the TPC-H benchmark
● Lambada does not support strings

◦Dbgen modified to generate numbers instead
● Scale factor is 1K, size of data set is 502 GiB

◦In Parquet - standard encoding, GZIP compression, size 273 GiB



End to End Query Latency

◦Accounts for:

‣  Serverless workers’ invocation time
‣  Useful work carried out
‣  Fetching results from result queue in Amazon SQS

◦Median of three runs are reported, same data center:

‣ Using a different data center showed negligible variation



Comparison with QaaS 

● Lambada is compared with Google BigQuery and Amazon Athena
● QaaS - similar operational simplicity as Lambada
● Queries without need for startup or maintenance
● Usage based pricing model
● Therefore, well suited for cold data interactive analytics
● PaaS solutions are not considered due to running on VMs and hourly pricing 

model



Scan Heavy Queries

Queries

LINEITEM sorted by l_shipdateTPC-H Q1 and Q6

Avoid Overlapping effects of 
complex wokloads

Effects of selection push-
downs



Effect of worker configuration

◦Parameter space of worker configurations are explored 

◦Amount of main memory of each worker, M, is varied

‣  Influences number of CPU cycles the function can use
‣  Influences number of files, F, that each worker may process

• F indirectly defines number of workers* 

◦Table is stored in 320 files

‣ W = 320/F workers 



TPC-H Query 1

● Selects 98% of LINEITEM
● Aggregates selection to very small amount of groups
● This eliminates effects of more complex plans 
● Query is ran twice: first is cold run, second is hot run
● Fresh function is created for each configuration and repetition



Effect of push-downs

◦Effect of pushing down selections and projects into the scan operator are studied 

◦TPC-H Query 1 and Query 6 are used

‣ The two most scan-bound queries of TPC-H

● Query 1 - selects 98% of relation, uses 7 attributes
● Query 6 - selects 2% of relation, uses 4 attributes

◦Only processing time is measured 

‣ Eliminates unrelated effects such as invocation time



Comparison with QaaS systems



End to End Workloads



Exchange operator

● Dataset of 100GB is used
● Locus and Qubole: use workers 

with 1536 MiB of main memory
● Pocket: uses 3008 MiB workers
● Lambada: uses 2048 MiB of 

allocated memory



Two Level Exchange

It is shown that “exchange 
operators can be implemented 
under a purely serverless paradigm 
and even outperform approaches 
with always-on infrastructure”



Does the paper support its claims?

● Yes!
● Data analytics on serverless computing is possible and economically viable
● Lambada can answer on 1Tb data in 15s
● Competitive with conventional QaaS and faster than job-scoped VMs



Possible next steps

● Explore the concept of serverless clusters
● Improve PyWren, Flint using the Lambada optimizations


