
Lambada: Interactive Data
Analytics on Cold Data Using

Serverless Cloud Infrastructure

Manind Gera, Aditya Pal, Harsh Mutha, Joseph Mitchell

Evolution of Data Processing

Infrastructure
as a Service

● Bare computing
resources.

● Starts a set of
resources for the
duration of a single
job.

● Scheduling jobs
onto resources that
are kept running.

● Cloud is used as a rented
computing infrastructure.

● Elasticity can lead to a lower
total cost than owned
infrastructure, limited by how
fast the infrastructure can be
started and stopped, and
services migrated

Platform as
a Service

Software as a
Service

● Customers do not
rent infrastructure
per se but the use
of a given software
functionality. Query as a

Service

● Usage based
pricing models

● Amazon Athena,
BigQuery.

Function as a
Service

● Way to implement
serverless
computing

● No need to install,
operate, and
manage a server
(infrastructure) to
get computations
done.

Comparison of cloud Architectures
Workload: Scan 1 TB from cloud storage

Goals of the paper

● Identify the technical limitations of a concrete implementation of FaaS, AWS
Lambda;

● Propose suitable solutions to the limitations that do not fundamentally reduce their
economic advantage, i.e., solutions that require only serverless components;

● Clarify the use cases in which the cost model behind Lambdas makes sense.
● Design a number of data processing components that accommodate the existing

limitations of serverless cloud infrastructure to build Lambada.

Contributions

● Characterize interactive analytics on cold data as the sweet spot for using FaaS.
● Show that AWS Lambda currently exposes a small amount of intra-function parallelism
● Identify the process of invoking a large number of functions naively as incompatible with the

interactivity requirement
● effect of the input block size on the performance and monetary cost of reading data from cloud

storage
● characterizing the competitiveness of FaaS in this domain.
● Design a purely serverless exchange operator that overcomes the rate limit of cloud storage

Suitable Cloud Infrastructure

● Use other cloud services to complement them.
● These services should not incur any cost for idle infrastructure
● Amazon offers AWS Lambda, AWS Fargate, and Amazon EC2 to run code in a function, a

container, and a virtual machine
● Only AWS Lambda has low enough start-up times for interactive analytics.
● For storage, Amazon offers DynamoDB and S3, which both scale to zero if used for temporary data

during query execution.
● Amazon SQS and AWS Step Functions

Architecture Overview

Data parallel query plans

● Queries are written in a thin Python front-end and go through a series of
translations that transform it into an executable form.

● A query plan in CVM is divided into scopes, each of which may run in a different
target platform.

● Most operators in a typical plan of Lambada run in a serverless scope
● However, queries may also contain small scopes running on the driver

Serverless workers

● The serverless workers run as a function in AWS Lambda, which is set up at installation time.
● Consists of an event handler, a “dependency layer” and some metadata
● Dependency layer contains the same execution framework that also runs on the driver and an event

handler as a wrapper around it implemented in Python.
● Event handler extracts the ID of the worker, the query plan fragment, and its input from the

invocation parameters of the function and forwards them to the execution framework.
● When the execution engine finishes its computation, the handler forwards its results to the driver.
● If an error occurs or the computation finished successfully, the handler posts a corresponding

message into a result queue in SQS, from which the driver polls until it has heard back from all
workers.

System components for Serverless Analytics

● Hard quotas and limits from the service-level agreements (SLAs) of the cloud
provider such as a limit on the request rate to S3,

● Execution speed under the given constraints (from service limits or from de-facto
performance of a resource)

● Usage-based cost of the various serverless services, such those from the running time
of the serverless workers but also from the number of requests to the various systems.

Limits of Sequential Invocation

Lambada Two-level Invocation

Every first generation worker works in a three phase
timeline:

● The time the driver took before it initiated their
invocation (namely, to launch all previous workers),

● The time their invocation took, i.e., the time between
their invocation was initiated and they were actually
running, and

● The time they took to do the second- generation
invocations.

Network Characteristics: Large Files

● There is a very stable limit of about 90
MiB/s per worker.

● Workers of virtually any size have fast
enough network to achieve this limit.

● Only workers with less than 1 GB of main
memory see a slightly lower ingress
bandwidth.

● Using more network connections does
not significantly change the overall
bandwidth.

Network Characteristics: Small Files

● Workers with large amounts of memory observe
a much higher network bandwidth,
occasionally reaching almost 300 MiB/s.

● This is only the case if they use several network
connections at the same time.

● It is observed that the time span during which the
burst may exceed the target is a small number
of seconds.

● In order to maximize performance for short-
running scans, we thus need to use multiple
concurrent connections.

Impact of Memory size

Lambada Cloud Native Scan

Exchange in Joins, Sorting and Grouping

● The exchange operator transfers its input among the workers such that all tuples
belonging to the same partition (according to some partitioning criteria) end up at
the same worker.

● Joins, sorting, and grouping can be executed in parallel with the help of one or more
exchange operators; no further operator with communication logic is required

● The proposed operator at the same time necessary and sufficient for data-parallel
processing on serverless workers.

Basic Exchange Operator

Lambada Multi Level Exchange

Complexity and Cost Analysis

Dataset and Methodology

● Most experiments use the TPC-H benchmark
● Lambada does not support strings

◦Dbgen modified to generate numbers instead
● Scale factor is 1K, size of data set is 502 GiB

◦In Parquet - standard encoding, GZIP compression, size 273 GiB

End to End Query Latency

◦Accounts for:

‣ Serverless workers’ invocation time
‣ Useful work carried out
‣ Fetching results from result queue in Amazon SQS

◦Median of three runs are reported, same data center:

‣ Using a different data center showed negligible variation

Comparison with QaaS

● Lambada is compared with Google BigQuery and Amazon Athena
● QaaS - similar operational simplicity as Lambada
● Queries without need for startup or maintenance
● Usage based pricing model
● Therefore, well suited for cold data interactive analytics
● PaaS solutions are not considered due to running on VMs and hourly pricing

model

Scan Heavy Queries

Queries

LINEITEM sorted by l_shipdateTPC-H Q1 and Q6

Avoid Overlapping effects of
complex wokloads

Effects of selection push-
downs

Effect of worker configuration

◦Parameter space of worker configurations are explored

◦Amount of main memory of each worker, M, is varied

‣ Influences number of CPU cycles the function can use
‣ Influences number of files, F, that each worker may process

• F indirectly defines number of workers*

◦Table is stored in 320 files

‣ W = 320/F workers

TPC-H Query 1

● Selects 98% of LINEITEM
● Aggregates selection to very small amount of groups
● This eliminates effects of more complex plans
● Query is ran twice: first is cold run, second is hot run
● Fresh function is created for each configuration and repetition

Effect of push-downs

◦Effect of pushing down selections and projects into the scan operator are studied

◦TPC-H Query 1 and Query 6 are used

‣ The two most scan-bound queries of TPC-H

● Query 1 - selects 98% of relation, uses 7 attributes
● Query 6 - selects 2% of relation, uses 4 attributes

◦Only processing time is measured

‣ Eliminates unrelated effects such as invocation time

Comparison with QaaS systems

End to End Workloads

Exchange operator

● Dataset of 100GB is used
● Locus and Qubole: use workers

with 1536 MiB of main memory
● Pocket: uses 3008 MiB workers
● Lambada: uses 2048 MiB of

allocated memory

Two Level Exchange

It is shown that “exchange
operators can be implemented
under a purely serverless paradigm
and even outperform approaches
with always-on infrastructure”

Does the paper support its claims?

● Yes!
● Data analytics on serverless computing is possible and economically viable
● Lambada can answer on 1Tb data in 15s
● Competitive with conventional QaaS and faster than job-scoped VMs

Possible next steps

● Explore the concept of serverless clusters
● Improve PyWren, Flint using the Lambada optimizations

