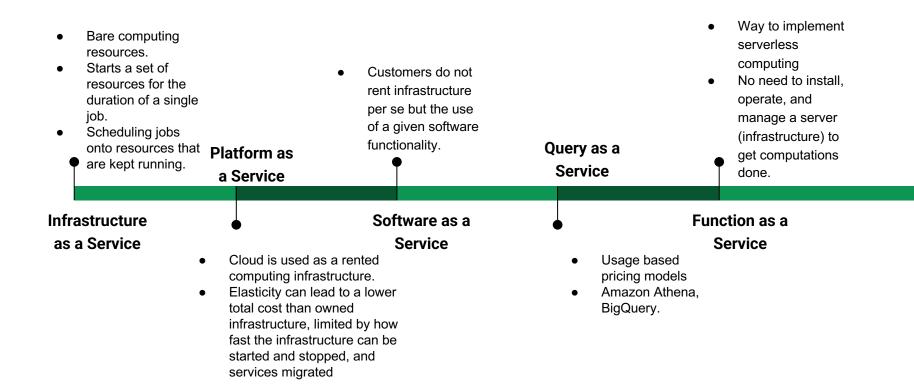
Lambada: Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure

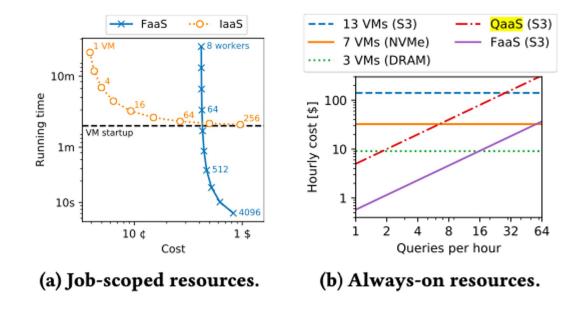
Manind Gera, Aditya Pal, Harsh Mutha, Joseph Mitchell

Evolution of Data Processing



Comparison of cloud Architectures

Workload: Scan 1 TB from cloud storage



Goals of the paper

- Identify the **technical limitations** of a concrete implementation of **FaaS**, **AWS Lambda**;
- Propose **suitable solutions** to the limitations that do not fundamentally reduce their economic advantage, i.e., solutions that **require only serverless components**;
- Clarify the use cases in which the cost model behind Lambdas makes sense.
- Design a number of data processing components that **accommodate the existing limitations** of serverless cloud infrastructure to build Lambada.

Contributions

- Characterize **interactive analytics on cold data** as the sweet spot for using FaaS.
- Show that AWS Lambda currently **exposes a small amount of intra-function parallelism**
- Identify the process of **invoking a large number of functions naively as incompatible** with the interactivity requirement
- effect of the input block size on the performance and monetary cost of reading data from cloud storage
- characterizing the competitiveness of FaaS in this domain.
- Design a purely serverless exchange operator that overcomes the rate limit of cloud storage

Suitable Cloud Infrastructure

- Use other cloud services to complement them.
- These services should **not incur any cost for idle infrastructure**
- Amazon offers AWS Lambda, AWS Fargate, and Amazon EC2 to run code in a function, a container, and a virtual machine
- Only **AWS Lambda** has low enough start-up times for interactive analytics.
- For storage, Amazon offers **DynamoDB and S3**, which both scale to zero if used for temporary data during query execution.
- Amazon SQS and AWS Step Functions

Architecture Overview

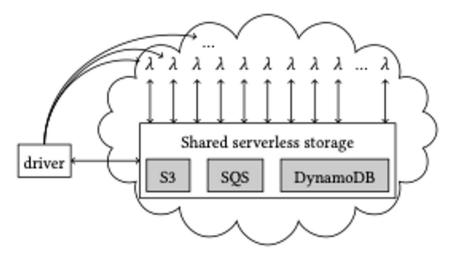
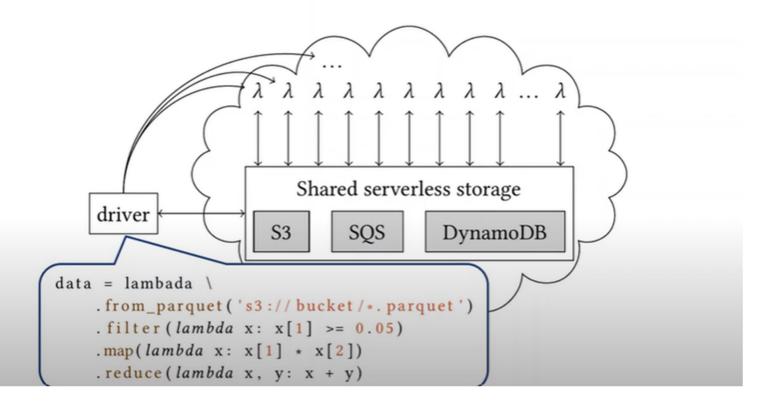
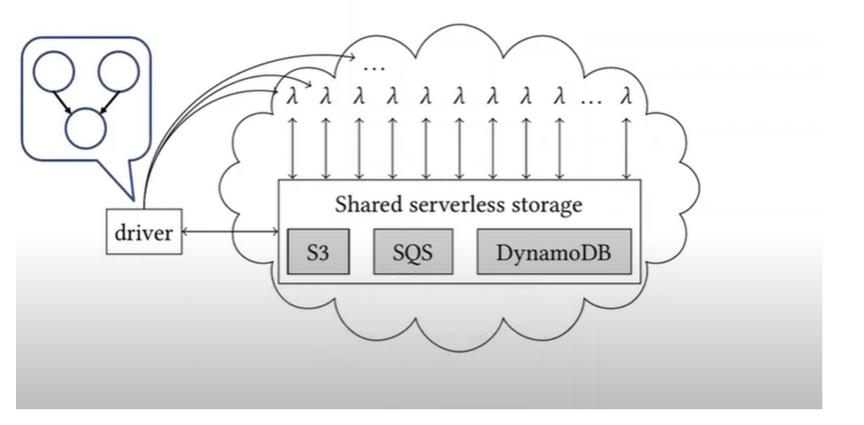
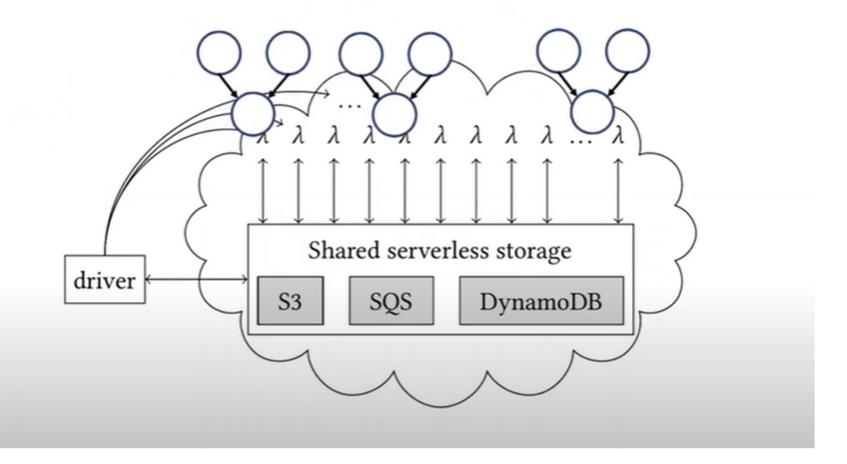
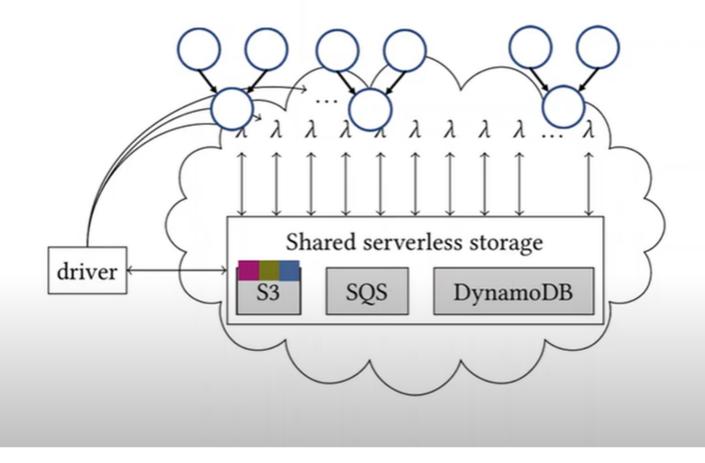


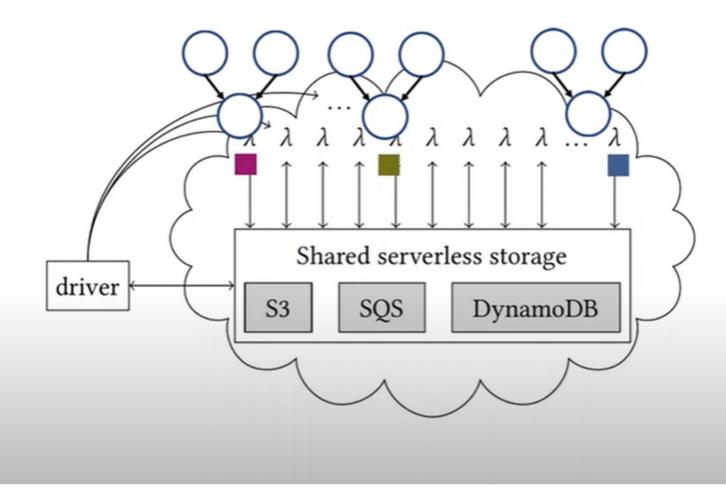
Figure 2: Architecture overview of Lambada.

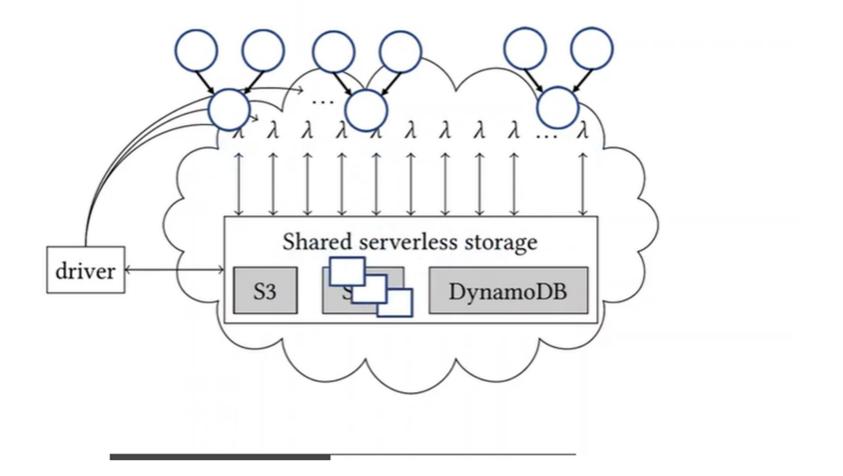


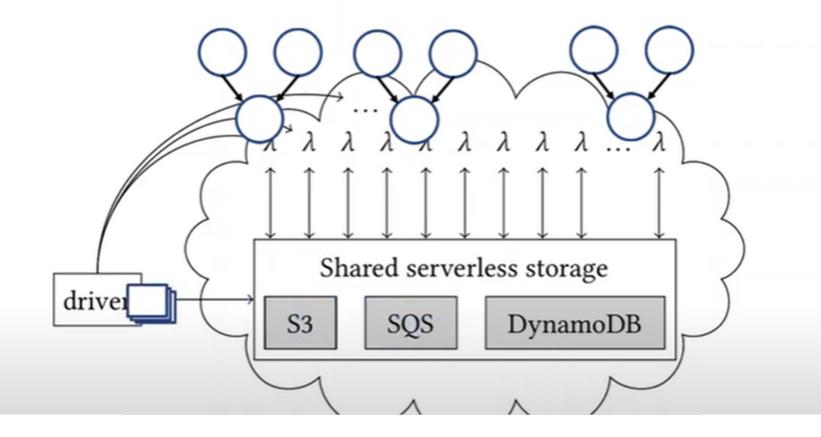












Data parallel query plans

- Queries are written in a thin **Python front-end** and go through a **series of translations** that transform it into an executable form.
- A query plan in CVM is **divided into scopes**, each of which may run in a different target platform.
- Most operators in a typical plan of Lambada **run in a serverless scope**
- However, queries may also contain **small scopes** running on the driver

Serverless workers

- The serverless workers run as a function in AWS Lambda, which is set up at installation time.
- Consists of an event handler, a "dependency layer" and some metadata
- Dependency layer contains the **same execution framework** that also runs on the driver and an event handler as a wrapper around it **implemented in Python**.
- Event handler **extracts the ID of the worker, the query plan fragment, and its input** from the invocation parameters of the function and forwards them to the execution framework.
- When the execution engine finishes its computation, the handler forwards its results to the driver.
- If an error occurs or the computation finished successfully, the **handler posts a corresponding message** into a result queue in SQS, from which the driver polls until it has heard back from all workers.

System components for Serverless Analytics

- Hard quotas and limits from the service-level agreements (SLAs) of the cloud provider such as a limit on the request rate to S3,
- **Execution speed** under the given constraints (from service limits or from de-facto performance of a resource)
- Usage-based cost of the various serverless services, such those from the running time of the serverless workers but also from the number of requests to the various systems.

Limits of Sequential Invocation

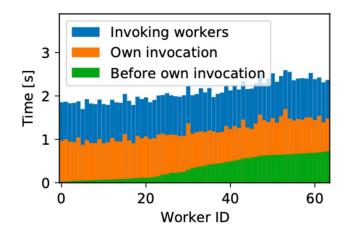
Metric	Region			
	eu	us	sa	ap
Single invocation time [ms]	36	363	474	536
Concurrent inv. rate [inv./s]	294	276	243	222
Intra-region rate [inv./s]	81	79	84	81

Table 1: Characteristics of function invocations.

Lambada Two-level Invocation

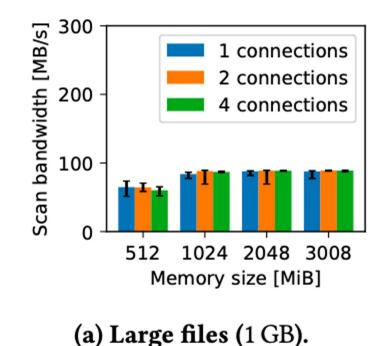
Every first generation worker works in a three phase timeline:

- The time the driver took before it initiated their invocation (namely, to launch all previous workers),
- The time their invocation took, i.e., the time between their invocation was initiated and they were actually running, and
- The time they took to do the **second-generation** invocations.



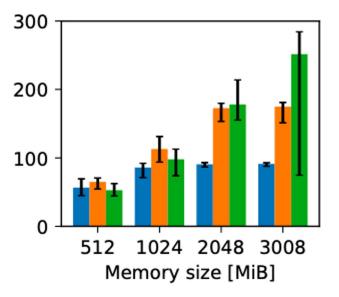
Network Characteristics: Large Files

- There is a very stable limit of about **90 MiB/s per worker**.
- Workers of virtually any size have **fast** enough network to achieve this limit.
- Only workers with less than 1 GB of main memory see a slightly lower ingress bandwidth.
- Using more network connections does not significantly change the overall bandwidth.

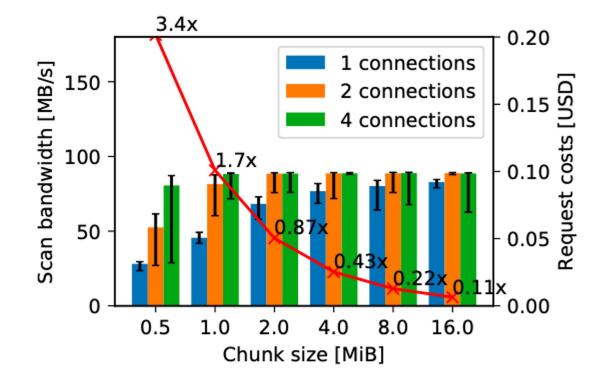


Network Characteristics: Small Files

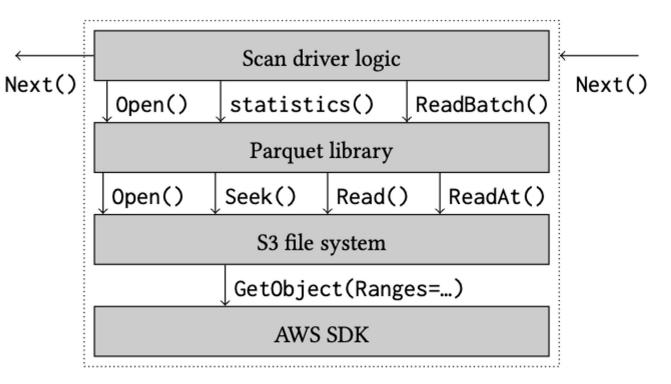
- Workers with large amounts of memory observe a much **higher network bandwidth**, occasionally reaching almost 300 MiB/s.
- This is only the case if they use **several network connections** at the same time.
- It is observed that the time span during which the burst may exceed the target is a **small number** of seconds.
- In order to maximize performance for shortrunning scans, we thus need to use **multiple concurrent connections.**



Impact of Memory size



```
Lambada Cloud Native Scan
```



Exchange in Joins, Sorting and Grouping

- The exchange operator transfers its input among the workers such that all tuples belonging to the same partition (according to some partitioning criteria) end up at the same worker.
- Joins, sorting, and grouping **can be executed in parallel** with the help of one or more exchange operators; no further operator with communication logic is required
- The proposed operator at the same time **necessary and sufficient** for data-parallel processing on serverless workers.

Basic Exchange Operator

Algorithm 1 Basic S3-based exchange operator.

- 1: **func** BASICEXCHANGE(p: Int, \mathcal{P} : Int[1..P], R: Record[1..N], FORMATFILENAME: Int × Int → String)
- 2: partitions \leftarrow DRAMPARTITIONING(R, \mathcal{P})
- 3: **for** *(receiver*, data) **in** partitions **do**
- 4: WRITEFILE(FORMATFILENAME(receiver, p), data)
- 5: **for** source in \mathcal{P} do
- 6: data \leftarrow data \cup READFILE(FORMATFILENAME(p, source))

7: **return** data

Lambada Multi Level Exchange

Algorithm 2 Two-level S3-based exchange operator.

1: func TwoLevelExcHange(p: int, P: int, R: Record [1..N])

2:
$$\langle p_1, p_2 \rangle \leftarrow H_s(p)$$

3: $\mathcal{P}_i \leftarrow \{q | q \in \{1..P\} : q_i = p_i\}$ for $i = 1, 2$

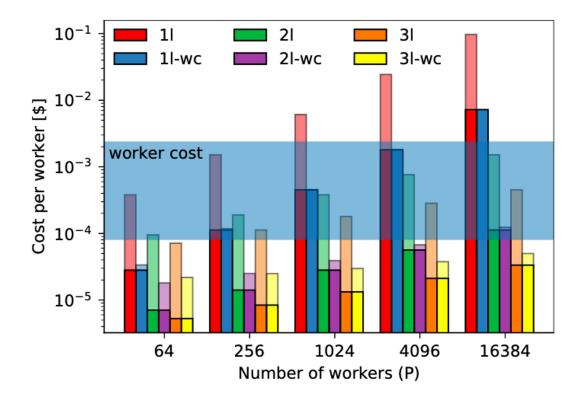
4:
$$f_i \leftarrow \langle s, t \rangle \mapsto "s3: //b{i}/snd{s}/rcv{r}"$$
 for $i = 1, 2$

- 5: tmp \leftarrow BASICGROUPEXCHANGE $(p, \mathcal{P}_1, f_1, R, H_s^2)$
- 6: **return** BASICGROUPEXCHANGE $(p, \mathcal{P}_2, f_2, \text{tmp}, H_s^1)$

Algorithm	#reads	#writes	#lists	#scans
11	P^2	P^2	O(P)	1
1l-wc	P^2	Р	O(P)	1
21	$2P\sqrt{P}$	$2P\sqrt{P}$	O(P)	2
2l-wc	$2P\sqrt{P}$	2P	O(P)	2
31	$3P\sqrt[3]{P}$	3P∛P	O(P)	3
3l-wc	$3P\sqrt[3]{P}$	3P	O(P)	3

Table 2: Cost models of S3-based exchange algorithms.

Complexity and Cost Analysis



Dataset and Methodology

- Most experiments use the TPC-H benchmark
- Lambada does not support strings
 Dbgen modified to generate numbers instead
- Scale factor is 1K, size of data set is 502 GiB
 In Parquet standard encoding, GZIP compression, size 273 GiB

End to End Query Latency

•Accounts for:

- Serverless workers' invocation time
- Useful work carried out
- Fetching results from result queue in Amazon SQS

•Median of three runs are reported, same data center:

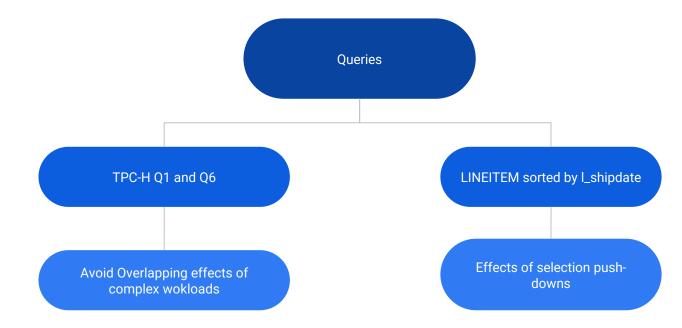
• Using a different data center showed negligible variation

Comparison with QaaS

- Lambada is compared with Google BigQuery and Amazon Athena
- QaaS similar operational simplicity as Lambada
- Queries without need for startup or maintenance
- Usage based pricing model
- Therefore, well suited for cold data interactive analytics
- PaaS solutions are not considered due to running on VMs and hourly pricing model

Google BigQuery

Scan Heavy Queries



Effect of worker configuration

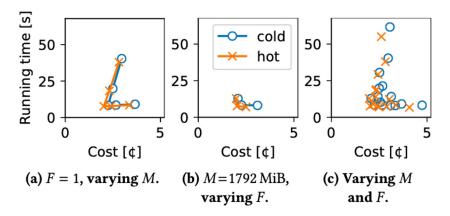
•Parameter space of worker configurations are explored

•Amount of main memory of each worker, M, is varied

- Influences number of CPU cycles the function can use
- Influences number of files, **F**, that each worker may process
- F indirectly defines number of workers*
- •Table is stored in 320 files
- W = 320/F workers

TPC-H Query 1

- Selects 98% of LINEITEM
- Aggregates selection to very small amount of groups
- This eliminates effects of more complex plans
- Query is ran twice: first is cold run, second is hot run
- Fresh function is created for each configuration and repetition

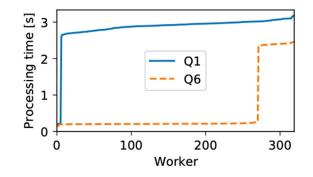


Effect of push-downs

°Effect of pushing down selections and projects into the scan operator are studied

 $\circ TPC\text{-}H$ Query 1 and Query 6 are used

- The two most scan-bound queries of TPC-H
 - Query 1 selects 98% of relation, uses 7 attributes
 - Query 6 selects 2% of relation, uses 4 attributes •Only processing time is measured
- Eliminates unrelated effects such as invocation time



Comparison with QaaS systems

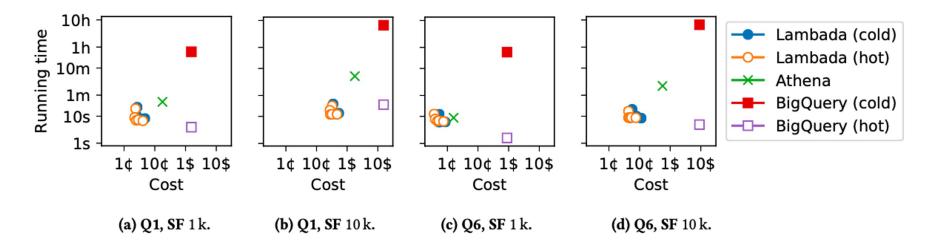


Figure 10: Comparison of Lambada (using F = 1 and varying M) with commercial QaaS systems.

End to End Workloads

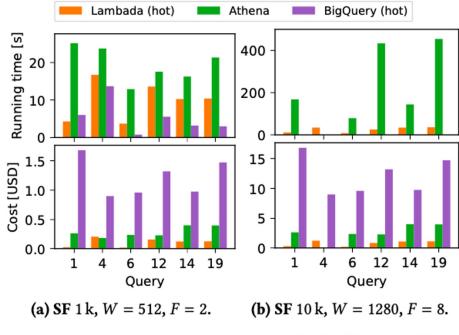


Figure 11: TPC-H queries on Lambada (M = 2 GiB).

Exchange operator

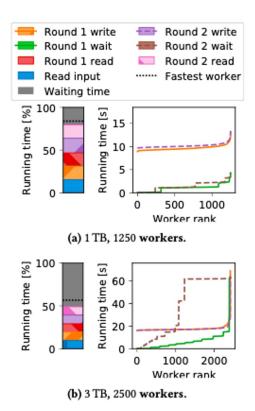
- Dataset of 100GB is used
- Locus and Qubole: use workers with 1536 MiB of main memory
- Pocket: uses 3008 MiB workers
- Lambada: uses 2048 MiB of allocated memory

	#Workers	Storage Layer		
		VMs	\$3	
Pocket [27]	250	58 s	98 s	
	500	28 s		
	1000	18 s		
Locus [38]	dynamic		80 s to 140 s	
Qubole [41]	400		580 s	
Lambada	250		22 s	
	500		15 s	
	1000		13 s	

Table 3: Running time of S3-based exchange operators.

Two Level Exchange

It is shown that "exchange operators can be implemented under a purely serverless paradigm and even outperform approaches with always-on infrastructure"



Does the paper support its claims?

- Yes!
- Data analytics on serverless computing is possible and economically viable
- Lambada can answer on 1Tb data in 15s
- Competitive with conventional QaaS and faster than job-scoped VMs

Possible next steps

- Explore the concept of serverless clusters
- Improve PyWren, Flint using the Lambada optimizations