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Volcano model(cont’d)
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Volcano model(cont’d)



Deficiencies of past optimizers



NUMA
● Non-uniform memory access (NUMA) is a computer 

memory design for multiple processors. The memory access 
time depends on the memory location of the processor. 
Under NUMA, a processor can access its own local memory 
faster than non-local memory



One cpu connects to 

a RAM by a BUS



A number of cpu are connected to  
a RAM by a BUS



By treating the CPU and 
neighboring RAM as one node, 
the CPU preferentially 
accesses the nearest RAM. At 
the same time, the CPU has a 
fast channel connection 
directly, so each CPU still has 
access to all RAM locations 
(only at different speeds).



Processing of parallel threads(macro)
1. Scanning, filtering and building the hash table HT(T) of
base relation T,
2. Scanning, filtering and building the hash table HT(S) of argument
S,
3. Scanning, filtering R and probing the hash table HT(S) of
S and probing the hash table HT(T) of T and storing the
result tuples.



Processing of parallel threads(micro)
1. Scanning, filtering and building the
    hash table HT(T) of base relation T,

2. Scanning, filtering and building the 
    hash table HT(S) of argument S,

3. Scanning, filtering R and probing the
   hash table HT(S) of S and probing
   the hash table HT(T) of T  and storing 
  the result tuples.



Date storage during the processing

The following diagram shows how 
to speed up building hashTable (T)

We can see that there are three 
threads to do one thing at the 
same time, and they have their 
own local storage

When the first red thread 
completes the task, it will work 
on a new Morsel



3. Dispatcher: Scheduling Parallel Pipeline Tasks
● Dispatcher - Assign tasks to work threads
● Task - A morsel + A pipeline job
● Tradeoff - Instant Elasticity Adjustment, LB & Low Maintenance Overhead
● Goals - Locality, Elasticity & Load Balancing



Goals for assigning tasks to threads
● Preserving (NUMA-)locality by assigning data morsels to cores on which the 

morsels are allocated
● Full elasticity concerning the level of parallelism of a particular query 
● Load balancing requires that all cores participating in a query pipeline finish 

their work at the same time in order to prevent(fast) cores from waiting for 
other (slow) cores. 



Dispatcher Architecture
● Maintain a list of pending pipeline 

jobs.
● Maintains lists of pending morsels
● A core requests a task from the 

dispatcher
● Dispatcher dispatches a task to core



Elasticity
● Elasticity: The ability to assign a core to a different query at anytime
● Why it is good? Example: Q-l(long query) vs Q+(important query)

Decrease the degree of parallelism of Q-l at any stage of processing in order to 
prioritize a more important query Q+. 

Q+ is finished —> back to  Q-l ( by dispatching most cores to Q-l)

- Require: Dispatching jobs `a morsel at a time` + A priority-based scheduling 
component



Implementation of Dispatcher
● The next morsel is cut down from storage area
● Dispatcher is implemented as a lock-free data structure
● QEPobject - passive state machine



Pros of morsel-wise processing
● No performance penalty if a morsel does not fit into cache. (In contrast to 

systems like Vectorwise and IBM’s BLU, which use vectors/strides to pass data 
between operators,)

● Morsel size is not very critical for performance



Morsel Size
● Morsel size is not very critical for performance
● It needs to be large enough to amortize scheduling overhead



Parallel 
Operator

● Hash Join

● Lock-Free Tagged Hash Table

● Table Partitioning

● Aggregation

● Sorting



Hash Join
● Hash table construction

○ First phase(no synchronization): 
input tuples store in the local 
storage area(reserve space for a 
pointer within each tuple), and 
create an empty hash table. The 
size of table is known precisely. 

○ Second phase: each thread scan its 
local storage and insert pointers



Hash Join
● Advantages:

○ less space (fully pipelined, in-place)
○ "good team player"
○ efficient (cardinalities differ strongly)
○ benefit from skew key distribution
○ insensitive to tuple size
○ no hardware-specific parameters 

select from
F, A, P, C
where 
F.date in [...]
F.aid = A.aid
...



Lock-Free Tagged Hash Table
Second phase: scan storage and insert pointers 
using the atomic compare-and-swap instruction.

● Early-filtering optimization(16 bit tag and 
48 bit pointer)
○ save space
○ single atomic compare-and-swap 

operation



Insert entry to tagged hash table

CAS is used to set pointer to the new element

CAS fails when another insert occurred simultaneously.



Hash table stores pointers instead of tuples
chaining vs. open addressing

● save space(tuples are much larger than pointers)
● chaining allows for tuples of variable size, which is not possible for open 

addressing
● probe misses are faster 



Tag VS. Bloom filter
● Bloom filter: 

○ It is additional data structure and incurs multiple memory read. 
○ Size must be proportional to hash table size to be effective. For large tables, 

bloom filter may not fit into cache.
● Tag: 

○ Only 16 bits, less space. No unnecessary access to memory. 
○ Only a small number of cheap bitwise operation.



Table Partitioning
In order to scan tables, relations need to distribute

● Round-Robin assignment
● partition relations by important attribute(primary key, foreign key).

○ relations are co-located for frequent join so there's less cross-socket 
communication

○ matching tuples are usually on the same socket



Aggregation
Many groups, many cache misses => 
contention from parallel access

● local pre-aggregation
○ aggregate NUMA-local morsel 

data to fixed-size thread-local 
hashtable ht

○ flush to thread-local partitions
● partition-wise aggregation

○ every thread scan the partitions 
and aggregate into a final 
thread-local hash table HT



Sorting
● local sort in each thread
● get the local separator keys 

and find the global separator 
keys (median-of-medians 
algorithm)  

● parallel merge the runs into a 
final output array 

top-k queries(heap)



Evaluation
● TPC-H Experiment 

● Additional Exps For Importance 
Of NUMA-Awareness

● Elasticity Experiment



Experiment - Setup
● Dataset: TPC-H 100G 
● Queries: Only use primary key (no index), results mainly measure the 

performance and scalability of the table scan, aggregation, and join (including 
outer, semi, anti join) operators

● Competitors: HyPer (use column-base storage) vs. Vectorwise (resembles a 
classical Volcano-style engine plus vector processing)

● Hardware platform: 
○ Nehalem EX and some with Sandy Bridge EP : different NUMA topology leads to  memory 

accesses (e.g., from socket 0 to socket 2 in Sandy Bridge EP require two hops instead of one)
○ 32 cores, 64 hardware threads (core 1-32 real, 33-64 virtual) 



Inter-connect
● Remote:  shows the percentage of data 

being accessed through the interconnects 
● QPI: show the utilization of the 

most-utilized interconnect link



● Scal: “Speedup”,  speedup in latency, help to evaluate 
the scalability on multi-threads system

● rd. (read), wr. (write): Throughput
● Remote:  measures the locality of each query. Exp: 1% 

in Query 1,  indicates most memory accesses are local
● QPI(Interconnect) : can become a bottleneck as remote 

access increases

Example: For query 1, with 32 threads, HyPer system reads 
82.6GB/s, 99% of it locally, and uses 40% of the QPI link 
bandwidth. 

Experiment - Analysis



Experiment-Analysis

- In all Queries, Hyper scales better than Vectorwise, with most queries up to 30 times faster
- Full-fledged HyPer takes advantage of multiple threads better than other systems



Experiment-Analysis

- Performance is significantly lower when we disable NUMA-awareness and rely on the operating system
- Reduction of Locality results in higher latency and lower throughput



Experiment-Analysis

- Performance is significantly lower when we disable adaptive morsel-wise processing 
- Load imbalance in threads



Why  doesn't the “scal” on the 33-64 threads increases in equal proportion ?



Virtual Core
The basic steps for a CPU pipeline are:

Stage 1 (Instruction Fetch) (IF)

Stage 2 (Instruction Decode) (ID)

Stage 3 (Instruction Execute) (ALU):ALU stands 
for Arithmetic and Logical Unit and occupies the 
majority of the silicon on the chip.

Stage 4 (Memory Access) (MA)

Stage 5 (Write Back) (WB)
This is going to be counted as two cores. 
So, we have 32 cores and 32 virtual 
cores with 64 hardware threads

Because ALU takes so much space we can 
replicate all other parts of the CPU and re-use 
ALU. 



Additional Experiment - NUMA Awareness
Remove NUMA awareness and perform memory placement by the operating system and 
“interleaved”, where all memory is allocated round robin over all nodes,

The geometric mean and maximum speedup of  NUMA-aware approach on TPC-H

●  Simply interleaving the memory is a reasonable,  though not optimal strategy. 

● Loss of Locality cause by disable NUMA-Awareness contributes to more often data exchange 
between sockets, and then the cross-sockets interconnect becomes the bottleneck. 



Additional Experiment - NUMA Awareness
Micro Benchmark: compares NUMA-local accesses with a random mix of 25% local and 75% 
remote (including 25% two-hop accesses on Sandy Bridge EP) accesses

● The Sandy Bridge EP has smaller throughput and higher latency with a random mix, 
which means NUMA- Awareness is much more important for its good performance, 
because NUMA-Awareness can help it reduce data exchange between sockets. 

● The importance of NUMA-awareness clearly depends on the speed and number of 
the cross-socket interconnects(QPI) in the hardware platform. 



Experiment - Elasticity
● Experiment: varied the number of parallel 

queries so as to adjust threads used by 
each query to test whether the 
throughput will be interfered by other 
processes.

● Feature: fully-fledged HyPer can keep a 
high throughput. 



Experiment - Elasticity
● Explain: Fully-fledged HyPer can 

dynamically re-assign worker threads to 
other queries with morsel-wise 
processing.  Morsel-wise processing 
ensures that we can smoothly switch 
tasks on threads, ensuring load Balance, 
so it can keep a stable and  high 
throughput.

● Example



Star Schema Benchmark

Except TPC-H, fully fledged HyPer also 
works well on Star Schema Benchmark 
with a speedup of over 40 for most 
queries



Conclusion
&

Future Work

● Conclusion 

● Future Work

● Improvement

● Technical Question



Conclusion
Fully-fledged HyPer with NUMA Awareness and morsel-wise processing can get 
good scalability and make fully use of multi-core systems. 



Future Work
● The design and evaluation of a scheduler, which takes quality-of-service 

constraints into account
● Investigate algorithms that take knowledge of the underlying hardware for 

further optimizations, specifically those that further reduce remote NUMA 
access, as shown by the slower results on the Sandy Bridge EP platform with 
its partially connected NUMA topology when compared with the fully- 
connected Nehalem EX. 



What the Paper Could Improve

● Should including more detail on lock-free data structures - especially the 
dispatcher

● Talk more details about how queries were interwoven during testing
● Should calculate overhead of scheduling



Technical Question: 
The authors mention in the paper that "the morsel 
size is not very critical for performance". What do 
you think is the reason behind this? Do the 
authors present any experiment to support their 
claim?


