
UpBit: Scalable In-Memory
Updatable Bitmap Indexing

Presenters: Yuxin Li, Jingyi Huang, Yizheng Xie, Taishan Chen

Background
Bitmap indexing

● Popular indexing technique for large data
● Widely applied in the industry

However,

● Storage requirements are very high without
compression

● To reduce redundancy and improve read
performance, we use compression and encoding

select * from T where X < 2

bitwise logical operation b1 OR b2

Run-length encoding (RLE)
● Simplest method of compression

● Replace consecutive repeating occurrences
of a symbol by “symbol + num of
occurrences”

● This method can be more efficient
if the data users only 0s and 1s in
bit patterns and one symbol is
more frequent than the other

Background

bitwise logical operation 10 OR 20

Read-optimized bitmap indexes

Background

Bitmap indexes are not suitable for updates

● In-place updates caused expensive steps of decoding and encoding, why?

Update Conscious Bitmaps – Update

The state of art — Update Conscious
Bitmaps (UCB)

● Efficient deletes – delete then
insert

● Existence bitvector (EB)
● Out of place update
● Avoided decoding + encoding

value bitvectors at every update

Update Conscious Bitmaps – Read

Additional AND operation between value bitvector and EB

0

1

More updates and deletes – bitvectors are less compressible

Update Conscious Bitmaps

● When answering a read query
○ To perform AND operation, the

entire value bitvector & EB

needs to be decoded

○ UCB needs to consult a

translation table for every

invalidated row and do AND

operation again

The problem: Scalability for Updates

Applications require support for both efficient reads and updates

Flaws with old approaches:

1. Read - optimized bitmap indexes designs are not suited for updates
2. Update optimized bitmap indexes (UCB)

● Drawback – Read performance does not scale with

updates (As more updates arrive, read queries become

increasingly more expensive. Why?)

In place update does not
depend on past updates

Solution: UpBit

A scalable in-memory Updatable Bitmap index design

Two new design elements:

1. A corresponding update bitvector (UB) for every value bitvector
a. Incoming update – UB contains both new and old value

b. Periodically merged with values bitvectors then re-initialized (after exceeds the threshold)

2. Fence Pointers – direct access of compressed bitvector (any position)
a. Avoid unnecessary decodings

b. Enable efficient multi-threaded decoding of a bitvector

UpBit Design Patterns - Data Structure

● Update Bitvector

○ UpBit per value

○ Initialize: all 0s (Space)

○ Update: flip on bit

○ Current Value: XOR operation

● Value-Bitvector Mapping (VBM, Hashing)

● Counter of 1s

○ Avoid XOR

○ Trigger Merging

UpBit Design Patterns - Fence Pointer (1)

Word Aligned Hybrid (WAH) Encoding

● Each 31 Not Encoded bits is a sequence

● Encoded bits are word-aligned

● Hybrid Encoding
○ For consecutives sequences of 0s or 1s:

run-length encoding

○ For short sequence of mixed 0s and 1s:

literal representation

0xx…xxx [31 bits]

All 1s: 11xx…xxx [30 bits]
All 0s: 10xx…xxx [30 bits]

Problem: How to access bit B[k] efficiently?

literal word

fill word

UpBit Design Patterns - Fence Pointer (2)

Fence Pointer (FP) Idea

● Fence: the position of not encoded word

● Pointer: the position of the encoded word that

starts with the content of this not encoded word

● Granularity g on not encoded bitvector:

Num of not encoded words between two fences

● Approximation

word 1 word 2 - 3 word 4 word 5 - 40 word 41 …

 word 1 word 2 word 3 word 4 word 5 …

Fence

Pointers

UpBit Design Patterns - Fence Pointer (3)

 uncomp_pos comp_pos uncomp_pos comp_pos … comp_pos

Implementation

● Array of (umcomp_pos, comp_pos) pairs

● g is the threshold when appending pairs

● umcomp_pos is the pos of not encoded word

comp_pos is the offset of encoded word

 1003 w49 2002 w97

Steps: Building FP for bit vector V

Decoding

Append FP pairs

UpBit Design Patterns - Fence Pointer (4)

Example 1: Searching row 62073

Not encoded word: 62073/31 = 2002

Bit Position: 62073 mod 31 = 11

Decode w97 and get position 11

Steps to Get Bit B[k] (Input: row k, bitvector B):

1. Use FP to get nearest position pos

2. While not found bit k:

a. Decode word w at position pos

b. If found: return value val

Else: pos ++
Example 2: Searching row 62150

Not encoded word: 62150/31 = 2004

Nearest not encoded word: 2002

Bit Position: 62150 - 31*2002 = 88

Decode from w97 and get position 88

UpBit Design Patterns - Scaling (Merging)

Merging Strategy:

● Maintain a threshold T

● When #1s > T: mark as “to be merged”

● Merge UB and VB to VB in the next search operation (Reuse)

Why Merging?

● Less Compressible UB

● Expensive Decoding and XOR Bitwise Operation

Step 1: Reuse result from XOR

Step 2: Build FP

Step 3: Re-initialize UB

UpBit Operations - Searching a Value

Probe A=20

Steps (Input: Value val):

1. Retrieve VB and UB given val (VBM)

2. Check Counter

a. All zeros: return VB

b. Return VB XOR UB

UpBit Operations - Deleting a Row

Delete Row 2

Question: How to find the value of row k?

Steps (Input: Row k):

1. Find the Value val of row k

2. Retrieve UB given val (VBM)

3. Flip UB at position k: UB[k] = ¬UB[k]

UpBit Operations - Get Value of a Row

Get Value of Row 2

Steps (Input: Row k):

For each Value val in range [10, 20, 30]:

1. Retrieve VB and UB given val (VMB)

2. Return val if VB[k] ⊗ UB[k]

Parallel Reading

UpBit Operations - Updating a Row

Update Row 2

from 20 to 10

Steps (Input: Row k, Value val):

1. Retrieve UB_i given val (VBM)

2. Find the old value old_val of row k

3. Retrieve UB_j given old_val (VBM)

4. Flip UB_i at position k: UB_i[k] = ¬UB_i[k]

5. Flip UB_j at position k: UB_j[k] = ¬UB_j[k]

How UCB update?

● Delete (Invalidate) then Insert: need to keep row mapping

● Single EB: all updates require changing EB -> Less compressible

UpBit Operations - Inserting a Row

Insert value 20

Steps (Input: Value val):

1. Retrieve UB given val (VBM)

2. If no padding space: extend UB

3. UB.#elements ++

4. UB[#elements] ++

Why UB?

Typically Smaller and more compressible

UpBit VS UCB

 UpBit

● One UpBit per Value

● XOR Operation

● Partial Decoding using FP

● Scalability by Merging

● No Invalidation

 UCB

● Only One EB: Burden concentrated on one bitvector (less compressible)

● AND Operation

● Full Decoding: Poor performance on reading an arbitrary row

● Poor Scalability: Need to merge EB with each VB

● Invalidate Rows: Need to keep a mapping when a row is updated

Evaluation

● Tested Approaches
○ In-place updates - Read-optimized Bitmap Indexing
○ UCB - Update-Conscious Bitmaps
○ UpBit

● Workloads
○ Synthetic data sets
○ Real-life data sets (Berkeley Earth dataset, TPC-H)

● Notations
○ n: data size
○ d: domain cardinality (i.e., # of different values)

Stable read performance

● UpBit scales with the
number of updates,
limiting the size of UBs

Ideal

Evaluation - Update and Read Performances

What causes the increase in latency?

n = 100M
d = 100

1. Merging
2. Lower compressibility compared to

initial state

Evaluation - Update and Read Performances

● Only 8% read overhead over optimal
● 3x faster on read performance than UCB

● 15-29x faster than UCB
● 51-115x faster than in-place

Read latency pays off for update performance

n = 100M
d = 100

Evaluation - Impact of Updates/Deletes/Inserts

Synthetic data set

● n = 100M, d = 100
● Workloads: 100k queries, 1%/5%/10% update/delete/insert

What may be the reason for the higher
latency in update compared with delete?

Evaluation - Scaling

d = 100
n = 100M

d = 1000
n = 100M

d = 100
n = 1B

In-place: Significant grow in
latency for mixed UDI queries

Synthetic data set

● Workloads: 100k mixed queries

Analysis - UpBit vs. Scan

● UpBit outperforms fast
scan at selectivity up to 1%

Selectivity: % of elements selected
from a column

Tuning - Merging Threshold

Merging Threshold

More frequent merging

Less compressible

… but most time used for
get old value, not very
prominent!

Better compression

Less frequent merging

Tuning - Fence Length

Fence Length

More space overheads, less compressible

Slower decodingFaster decoding

Less overheads, more compression

Need to experiment for different dataset.

Tuning - Parallel Reading

Fence

Impact and Tradeoff

In-place: In-place Update Bitmaps

UCB: Update Conscious Bitmaps

UpBit-FP: Fence Pointers, no Update Bitmaps

UpBit: FP and UB

Impact - Size

UB can be efficient
compressed

UB also makes bitmaps more
compressible, less
uncompressed bits so less fence
pointers.

Impact - Fence Pointer only

Tradeoff - Fence Length

Read

Update

Memory

Performance gain - FP and UB

Experiment on TPC-H

Less selectivity means less values fulfils
requirements, and less bitmap vectors will
be read.

Conclusion

Goals:

❏ Higher compressibility

❏ Efficient access to value

❏ Bounded cost of updates

Designs:

➔ Distributing the update overhead
to multiple UBs

➔ Partial decoding with fence
pointers

➔ Query-driven UB merging

Further Discussion: Concurrency Control

● What concurrency control strategy should we choose for UpBit?

Q & A

Thank You!

Any questions for us?

