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What is the problem 
& why it is 
important?



Practical: Insufficiently Adaptive Indexing Algorithms

● Many techniques offset their advantages 
with their concessions

● Adaptive Indexing often encounters 
several issues
○ Struggles with diverse workloads
○ Balancing individual query vs aggregate query 

runtime
○ Escalating Variance
○ Slow convergence/sorting 

● Single issue tunnel vision
○ How can solutions be combined and morphed 

to work in harmony?
● Static and no consideration of 

environment an algorithm runs in
● No effort to handle oddly skewed data in 

partitioning systems



Conceptual: Identifying Patterns and Generalizing Solutions

● Arguably the most important 
contribution the work presents is 
that identifies patterns and 
differences to bring these together
○ Data partitioning
○ Distributed indexing

● Previous work does not generalize 
data organization/partitioning 
○ Classical solutions

● Previous work doesn’t differentiate 
reorganization timing distributions



Importance: Fairly Evident

● By tackling the conceptual issues, researchers are able 
to wield and develop tools to improve adaptive 
indexing algorithms
○ Accelerating improvement 
○ Focusing advancement paths

● By tackling the practical issues…
○ Financial benefits: Reduced cost for organizations by developing 

more efficient systems that accomplish the same in reduced time
○ Energy benefits: Less computational power to achieve desired 

results
○ Ecological benefits: Hand-in-hand with the latter two

■ Less “fuel burned”



Why is it hard & why 
older approaches 
are not enough?



Recap: Common indexing techniques

● Tree
○ B+ Tree.
○ LSM Tree.
○ Radix Tree.

● Hash index
● Bitmap index
● Database cracking

○ Standard cracking
○ Stochastic cracking(DD1R is used in the paper)
○ Hybrid cracking(HCS and HSS are used in the paper)

#


Details: Standard cracking(DC)

● The first time a range query is 
posed on an attribute A, a cracker 
database makes a copy of column 
A.

● The copied column is being 
continuously split into more and 
more pieces as queries arrive. 

Q1:
select * 
from R
where R.A > 10
   and  R.A < 14

Q2:
select * 
from R
where R.A > 7
   and  R.A <= 16
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Piece 1:
A <= 10

Piece 2:
10<A<14

Piece 3:
14<=A

Piece 1:
A <= 7

Piece 2:
7<A<=10

Piece 3:
10<A<14

Piece 4:
14<=A<=16

Piece 5: 16<A

Q1
(copy)

Q2
(in-place)



Details: Stochastic cracking(DD1R)

DD1R is an enhanced version of DC: before 
split the column, it will randomly choose a 
pivot, and split the column on the pivot in 
advance.



Details: Hybrid Cracking(HCS)

13, 16, 4, 9, 2, 12, 7, 1, 19, 3, 14, 11, 8, 6

13, 16, 4, 9, 2, 12, 7 1, 19, 3, 14, 11, 8, 6

4, 9, 2, 7, 12, 13, 16 1, 8, 6, 3, 11, 14, 19

4, 9, 2, 7, 16 1, 8, 6, 3, 14, 19 11, 12, 13

4, 2, 7, 9, 16 1, 6, 3, 8, 14, 19 11, 12, 13

4, 2, 16 1, 6, 3, 14, 19 7, 8, 9, 11, 12, 13

SELECT A 
FROM R
WHERE A >=10
  AND A<14Splitting 

partitions to 
fit in memory

crack

Move qualifying 
values and sort

crack

Move qualifying 
values and sort

SELECT A 
FROM R
WHERE A >=7
  AND A<=12

● The first query of each column splits 
the column’s data into initial partitions 
that each fit in memory (or even in the 
CPU cache)

● For each query, the process can be 
divided into 2 phase: 
○ Crack each partition according to the given 

query.
○ Move qualifying column values into the final 

partition(s) and sort each of them.



Details: Hybrid Cracking(HSS)

The HSS is a variant of the HCS 
which will sorts the partition 
instead of cracking the partition 
during phase 1.

Each of these algorithms mostly focus on reducing a single issue at a 
time ! 



What is key idea and 
why it works?



Components of Adaptive Adaptive Indexing
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Generalize Index Refinement

● There are tons of different implementations 
of Adaptive Indexing:
○ Standard Database Cracking, Stochastic Cracking, 

Hybrid Cracking, etc.

● But the heart of every data reorganizing 
algorithm is Data Partitioning

● partition_in_k()
○ Fan-out: k (number of partitions you will get)

● Example
○ Standard Database Cracking is just partition_in_k() 

with k = 2
○ Sorting is just partition_in_k with k=size_of_dataset

Fig. 1 from Adaptive Adaptive Indexing



Generalize Index Refinement Cont.

● Adaptive Adaptive Indexing
○ This algorithm is able to set the fan-out k of 

partition_in_k() freely
○ The fan-out k would heavily affect our policy to 

adapt the reorganization effort

● Meta-Adaptive Indexing uses 
partition_in_k() solely for data 
reorganization

● Implementation of partition_in_k()
○ Radix based partitioning 
○ Pros: higher partitioning throughput than 

traditional comparison based methods
○ Cons: Does not generate partitions with respect 

to predicates –> requires filter to qualify entries
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Data Partitioning in the Very First Query

● Out-of-place Radix Partitioning 
in two steps:

a. Scan the input and build a histogram. 
Use the histogram to initialize 
pointers to fill the partitions. 

b. Copy entries into designated 
partitions. 

● Naive copy is costly: TLB misses 
are triggered if the number of 
partition is more than 32.

CPU Chip

        CPU
  
  MMU

 

  Mem

  TLB

 Page Table

①
VA

②
VA

              ③
    PTE request

              ④
             PTE

              ⑤
              PA

              ⑥
            Data

              ③
              PA

              ④
            Data



Data Partitioning in the Very First Query

● To address the problem of too 
many TLB misses, use 
software-managed buffers 



Data Partitioning in the Very First Query

● Create a vast amount of partitions using radix 
partitioning with only slightly higher costs as two 
times crack-in-two which creates only three(or 
two, depend on the query).

● In total, the strategy for the very first query is 
clear: Create a significantly larger number of 
partitions than standard cracking (creating only 
three partitions) with negligible overhead and 
consequently reduce the average partition size 
drastically



Data Partitioning in Subsequent Queries

● In-place Radix Partitioning since the 
data is now present in the index column
○ Cuckoo-style: Search and Replace

● Scan partition p0 from the beginning and 
identify the first entry x that does not 
belong to partition p0 but actually to 
another partition p2

● we scan partition p2 until we find the first 
entry y that does not belong to p2

● Replace entry with x with entry y
● Repeat this process until a cycle is 

detected
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Data Partitioning in Subsequent Queries

● In-place Radix Partitioning since the data 
is now present in the index column
○ Cuckoo-style: Search and Replace

● With a decrease in partition size, increase 
the fan-out k. At a sufficiently small size, 
finish the partition by sorting it as the 
additional cost is negligible

● Where modifications on fan-out k 
happens! But how?



Adapting the Partitioning Fan-out

● How to set Fan-out K?
○
○ Fan-out bits: 
○ s = size of the partition to reorgnize  | q = the query sequence number

● What is inside  
○  

● b_first, b_min, b_max, b_sort, t_adapt, t_sort are all manually set



Adapting the Partitioning Fan-out Cont.

● first query different than others 
● Increase the granularity of 

reorganization with a decrease of 
input partition size

● Finish the input partition by sorting it 
at a sufficiently small size
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Handling Skewed Distributions

● Radix-based partition performs 
badly when key is highly skewed
○ Non-uniform partition sizes —> index 

quality of partitioning steps decreases

● Equi-depth out-of-place partitioning
○ Similar with Equi-depth histogram

● skewtol determines how many 
data can be split into one partition



Equi-depth out-of-place partitioning

● Happens During Data Partitioning 
in the very First Query

● Build the histogram with respect to 
b_first

● Perform out-of-place Radix 
partitioning and build a new 
histogram on the skewed partitions 
with respect to the b_min

● Perform in-place Radix partitioning 
on the skewed partitions.



Experiments: How 
Does this Paper 
Supports its Claim



Configuration parameters



Emulation of adaptive indexes

● Motivation is to replace existing adaptive indexes by a single method
● Emulation of some adaptive indexes can be achieved by configuring 

parameters



Baselines

● Standard cracking: simplest adaptive indexing
● Stochastic cracking: decouples reorganization from the query predicates to a 

certain degree and introduce randomness
● Hybrid cracking: hybrid cracking splits the input non-semantically into chunks 

and applies standard cracking
● Sort + Binary search
● Scan



Experimental Setup

● 100 million entries, 8B key, 8B rowID, 
1.5GB index column

● Three characteristic key distributions 
(key range from 0 to 2⁶⁴ - 1)
○ Uniform distribution
○ Normal distribution (mean = 2⁶³, standard 

deviation = 2⁶¹)
○ Zipf distribution (𝛼 = 0.6)

● Query workload: 1000 range queries 
with 1% selectivity and varying 
workload patterns



Individual query response time

● Manual configuration
○ b_first = 10, more fan-outs make partitioning significantly more expensive
○ b_min = 3, b_max = 6, to balance convergence speed and pressure on individual query
○ t_adapt = 64MB, the size of the translation lookaside buffer
○ t_sort = 256KB, the size of L2 cache
○ skewtol = 5, moderate skews are tolerated



Individual query response time - Uniform distribution



Individual query response time - Normal distribution



Individual query response time - Zipf distribution



Accumulated Query Response Time

● Manuel configuration same as before
● Simulated annealing configuration



Accumulated Query Response Time - Uniform distribution

    Random     Skewed     Periodic   Sequential Zoomoutalt Zoominalt



Accumulated Query Response Time - Normal distribution

    Random     Skewed     Periodic   Sequential Zoomoutalt Zoominalt



Accumulated Query Response Time - Zipf distribution

    Random     Skewed     Periodic   Sequential Zoomoutalt Zoominalt



What is missing and 
how can we improve 
this idea?



What’s missing

● The paper does not discuss the update schema and performance under 
adaptive adaptive indexing
○ Frequent insertions could undermine query performance since it might increase the amount of 

invested indexing effort

● Individual query response time only examines the random query workload, 
performance could vary under other types of query workload
○ For example, if query frequently access the same range, meta adaptive indexing won’t perform 

as well as standard cracking since it’s paying unnecessary indexing effort for every query

● Little discussion on the limitations of manual parameter setting
○ Simulating annealing still requires manual configuration
○ How do we tell the future of workloads or dynamically adjust to single workload changing



Possible next steps 
of the work 
presented in the 
paper?



Natural Progressions and Escalations

● Meshing the generalized solution with 
different data structures
○ Grid Tables
○ KD trees
○ Hashing structures

● Adaptive indexing with ML
○ CNNs
○ Deep learning methods
○ Workload classification

● Experiment performance on different or 
adaptive sorting keys

● Dynamic parameter setting on partition 
counts and 



Actual Follow Ups
● “MetisIDX-From Adaptive to Predictive Data Indexing” - focus

○ Machine Learning
○ Key range forecasting and undergo 
○ Continuous training by the indexing thread

● “Predictive Indexing”
○ Problem: Retrospectively making computationally expensive physical design changes at once
○ Continuously improves  physical design using lightweight physical design changes

● SPST-Index: A Self-Pruning Splay Tree Index for Caching Database Cracking.
● “Progressive indexes: indexing for interactive data analysis”

○ Automatic index creation while providing interactive response times to incoming queries
○ Design allows queries to have a limited budget to spend on index creation

● “Cracking KD-Tree: The First Multidimensional Adaptive Indexing”
○ Generates a KD-Tree based on multidimensional range query predicates
○ Incrementally creates partial multidimensional indexes as a by-product of query processing.

● “GridTables: A One-Size-Fits-Most H2TAP Data Store’



Discussion: 
Technical Question

The authors of adaptive adaptive indexing show 
that their technique performs well in multiple 
generic workloads. What type of workloads 
would adaptive adaptive indexing not work well 
for and why? Can you think of examples of 
reads or updates that would be inefficient in this 
schema?


