
Adaptive Adaptive Indexing
Authored by: Felix Martin Schuhknecht, Jens Dittrich , Laurent Linden

Presented by: Samir Farhat, Jianqi Ma, Ning Wang and Lanfeng Liu

What is the problem
& why it is
important?

Practical: Insufficiently Adaptive Indexing Algorithms

● Many techniques offset their advantages
with their concessions

● Adaptive Indexing often encounters
several issues
○ Struggles with diverse workloads
○ Balancing individual query vs aggregate query

runtime
○ Escalating Variance
○ Slow convergence/sorting

● Single issue tunnel vision
○ How can solutions be combined and morphed

to work in harmony?
● Static and no consideration of

environment an algorithm runs in
● No effort to handle oddly skewed data in

partitioning systems

Conceptual: Identifying Patterns and Generalizing Solutions

● Arguably the most important
contribution the work presents is
that identifies patterns and
differences to bring these together
○ Data partitioning
○ Distributed indexing

● Previous work does not generalize
data organization/partitioning
○ Classical solutions

● Previous work doesn’t differentiate
reorganization timing distributions

Importance: Fairly Evident

● By tackling the conceptual issues, researchers are able
to wield and develop tools to improve adaptive
indexing algorithms
○ Accelerating improvement
○ Focusing advancement paths

● By tackling the practical issues…
○ Financial benefits: Reduced cost for organizations by developing

more efficient systems that accomplish the same in reduced time
○ Energy benefits: Less computational power to achieve desired

results
○ Ecological benefits: Hand-in-hand with the latter two

■ Less “fuel burned”

Why is it hard & why
older approaches
are not enough?

Recap: Common indexing techniques

● Tree
○ B+ Tree.
○ LSM Tree.
○ Radix Tree.

● Hash index
● Bitmap index
● Database cracking

○ Standard cracking
○ Stochastic cracking(DD1R is used in the paper)
○ Hybrid cracking(HCS and HSS are used in the paper)

#

Details: Standard cracking(DC)

● The first time a range query is
posed on an attribute A, a cracker
database makes a copy of column
A.

● The copied column is being
continuously split into more and
more pieces as queries arrive.

Q1:
select *
from R
where R.A > 10
 and R.A < 14

Q2:
select *
from R
where R.A > 7
 and R.A <= 16

Column A

13
16
4
9
2
12
7
1
19
3
14
11
8
6

4
9
2
7
1
3
8
6
13
12
11
16
19
14

4
2
1
3
6
7
9
8
13
12
11
14
16
19

Piece 1:
A <= 10

Piece 2:
10<A<14

Piece 3:
14<=A

Piece 1:
A <= 7

Piece 2:
7<A<=10

Piece 3:
10<A<14

Piece 4:
14<=A<=16

Piece 5: 16<A

Q1
(copy)

Q2
(in-place)

Details: Stochastic cracking(DD1R)

DD1R is an enhanced version of DC: before
split the column, it will randomly choose a
pivot, and split the column on the pivot in
advance.

Details: Hybrid Cracking(HCS)

13, 16, 4, 9, 2, 12, 7, 1, 19, 3, 14, 11, 8, 6

13, 16, 4, 9, 2, 12, 7 1, 19, 3, 14, 11, 8, 6

4, 9, 2, 7, 12, 13, 16 1, 8, 6, 3, 11, 14, 19

4, 9, 2, 7, 16 1, 8, 6, 3, 14, 19 11, 12, 13

4, 2, 7, 9, 16 1, 6, 3, 8, 14, 19 11, 12, 13

4, 2, 16 1, 6, 3, 14, 19 7, 8, 9, 11, 12, 13

SELECT A
FROM R
WHERE A >=10
 AND A<14Splitting

partitions to
fit in memory

crack

Move qualifying
values and sort

crack

Move qualifying
values and sort

SELECT A
FROM R
WHERE A >=7
 AND A<=12

● The first query of each column splits
the column’s data into initial partitions
that each fit in memory (or even in the
CPU cache)

● For each query, the process can be
divided into 2 phase:
○ Crack each partition according to the given

query.
○ Move qualifying column values into the final

partition(s) and sort each of them.

Details: Hybrid Cracking(HSS)

The HSS is a variant of the HCS
which will sorts the partition
instead of cracking the partition
during phase 1.

Each of these algorithms mostly focus on reducing a single issue at a
time !

What is key idea and
why it works?

Components of Adaptive Adaptive Indexing

Generalize
Index

Refinement

Defuse
Skewed

Data

Adapt
Reorganize

Effort

Components of Adaptive Adaptive Indexing

Generalize
Index

Refinement

Defuse
Skewed

Data

Adapt
Reorganize

Effort

Generalize Index Refinement

● There are tons of different implementations
of Adaptive Indexing:
○ Standard Database Cracking, Stochastic Cracking,

Hybrid Cracking, etc.

● But the heart of every data reorganizing
algorithm is Data Partitioning

● partition_in_k()
○ Fan-out: k (number of partitions you will get)

● Example
○ Standard Database Cracking is just partition_in_k()

with k = 2
○ Sorting is just partition_in_k with k=size_of_dataset

Fig. 1 from Adaptive Adaptive Indexing

Generalize Index Refinement Cont.

● Adaptive Adaptive Indexing
○ This algorithm is able to set the fan-out k of

partition_in_k() freely
○ The fan-out k would heavily affect our policy to

adapt the reorganization effort

● Meta-Adaptive Indexing uses
partition_in_k() solely for data
reorganization

● Implementation of partition_in_k()
○ Radix based partitioning
○ Pros: higher partitioning throughput than

traditional comparison based methods
○ Cons: Does not generate partitions with respect

to predicates –> requires filter to qualify entries

Components of Adaptive Adaptive Indexing

Generalize
Index

Refinement

Defuse
Skewed

Data

Adapt
Reorganize

Effort

Data Partitioning in the Very First Query

● Out-of-place Radix Partitioning
in two steps:

a. Scan the input and build a histogram.
Use the histogram to initialize
pointers to fill the partitions.

b. Copy entries into designated
partitions.

● Naive copy is costly: TLB misses
are triggered if the number of
partition is more than 32.

CPU Chip

 CPU

 MMU

 Mem

 TLB

 Page Table

①
VA

②
VA

 ③
 PTE request

 ④
 PTE

 ⑤
 PA

 ⑥
 Data

 ③
 PA

 ④
 Data

Data Partitioning in the Very First Query

● To address the problem of too
many TLB misses, use
software-managed buffers

Data Partitioning in the Very First Query

● Create a vast amount of partitions using radix
partitioning with only slightly higher costs as two
times crack-in-two which creates only three(or
two, depend on the query).

● In total, the strategy for the very first query is
clear: Create a significantly larger number of
partitions than standard cracking (creating only
three partitions) with negligible overhead and
consequently reduce the average partition size
drastically

Data Partitioning in Subsequent Queries

● In-place Radix Partitioning since the
data is now present in the index column
○ Cuckoo-style: Search and Replace

● Scan partition p0 from the beginning and
identify the first entry x that does not
belong to partition p0 but actually to
another partition p2

● we scan partition p2 until we find the first
entry y that does not belong to p2

● Replace entry with x with entry y
● Repeat this process until a cycle is

detected

36

13

67

42

99

78

18

85

28

55

5

47

Input Data

36

13

67

42

99

78

18

13

28

55

5

47

36

13

67

42

99

78

85

13

28

55

5

47

13 85 18

36

13

67

42

99

78

85

13

18

55

5

47

28

36

28

67

42

99

78

85

13

18

55

5

47

13Entry X

Data Partitioning in Subsequent Queries

● In-place Radix Partitioning since the data
is now present in the index column
○ Cuckoo-style: Search and Replace

● With a decrease in partition size, increase
the fan-out k. At a sufficiently small size,
finish the partition by sorting it as the
additional cost is negligible

● Where modifications on fan-out k
happens! But how?

Adapting the Partitioning Fan-out

● How to set Fan-out K?
○
○ Fan-out bits:
○ s = size of the partition to reorgnize | q = the query sequence number

● What is inside
○

● b_first, b_min, b_max, b_sort, t_adapt, t_sort are all manually set

Adapting the Partitioning Fan-out Cont.

● first query different than others
● Increase the granularity of

reorganization with a decrease of
input partition size

● Finish the input partition by sorting it
at a sufficiently small size

Components of Adaptive Adaptive Indexing

Generalize
Index

Refinement

Defuse
Skewed

Data

Adapt
Reorganize

Effort

Handling Skewed Distributions

● Radix-based partition performs
badly when key is highly skewed
○ Non-uniform partition sizes —> index

quality of partitioning steps decreases

● Equi-depth out-of-place partitioning
○ Similar with Equi-depth histogram

● skewtol determines how many
data can be split into one partition

Equi-depth out-of-place partitioning

● Happens During Data Partitioning
in the very First Query

● Build the histogram with respect to
b_first

● Perform out-of-place Radix
partitioning and build a new
histogram on the skewed partitions
with respect to the b_min

● Perform in-place Radix partitioning
on the skewed partitions.

Experiments: How
Does this Paper
Supports its Claim

Configuration parameters

Emulation of adaptive indexes

● Motivation is to replace existing adaptive indexes by a single method
● Emulation of some adaptive indexes can be achieved by configuring

parameters

Baselines

● Standard cracking: simplest adaptive indexing
● Stochastic cracking: decouples reorganization from the query predicates to a

certain degree and introduce randomness
● Hybrid cracking: hybrid cracking splits the input non-semantically into chunks

and applies standard cracking
● Sort + Binary search
● Scan

Experimental Setup

● 100 million entries, 8B key, 8B rowID,
1.5GB index column

● Three characteristic key distributions
(key range from 0 to 2⁶⁴ - 1)
○ Uniform distribution
○ Normal distribution (mean = 2⁶³, standard

deviation = 2⁶¹)
○ Zipf distribution (𝛼 = 0.6)

● Query workload: 1000 range queries
with 1% selectivity and varying
workload patterns

Individual query response time

● Manual configuration
○ b_first = 10, more fan-outs make partitioning significantly more expensive
○ b_min = 3, b_max = 6, to balance convergence speed and pressure on individual query
○ t_adapt = 64MB, the size of the translation lookaside buffer
○ t_sort = 256KB, the size of L2 cache
○ skewtol = 5, moderate skews are tolerated

Individual query response time - Uniform distribution

Individual query response time - Normal distribution

Individual query response time - Zipf distribution

Accumulated Query Response Time

● Manuel configuration same as before
● Simulated annealing configuration

Accumulated Query Response Time - Uniform distribution

 Random Skewed Periodic Sequential Zoomoutalt Zoominalt

Accumulated Query Response Time - Normal distribution

 Random Skewed Periodic Sequential Zoomoutalt Zoominalt

Accumulated Query Response Time - Zipf distribution

 Random Skewed Periodic Sequential Zoomoutalt Zoominalt

What is missing and
how can we improve
this idea?

What’s missing

● The paper does not discuss the update schema and performance under
adaptive adaptive indexing
○ Frequent insertions could undermine query performance since it might increase the amount of

invested indexing effort

● Individual query response time only examines the random query workload,
performance could vary under other types of query workload
○ For example, if query frequently access the same range, meta adaptive indexing won’t perform

as well as standard cracking since it’s paying unnecessary indexing effort for every query

● Little discussion on the limitations of manual parameter setting
○ Simulating annealing still requires manual configuration
○ How do we tell the future of workloads or dynamically adjust to single workload changing

Possible next steps
of the work
presented in the
paper?

Natural Progressions and Escalations

● Meshing the generalized solution with
different data structures
○ Grid Tables
○ KD trees
○ Hashing structures

● Adaptive indexing with ML
○ CNNs
○ Deep learning methods
○ Workload classification

● Experiment performance on different or
adaptive sorting keys

● Dynamic parameter setting on partition
counts and

Actual Follow Ups
● “MetisIDX-From Adaptive to Predictive Data Indexing” - focus

○ Machine Learning
○ Key range forecasting and undergo
○ Continuous training by the indexing thread

● “Predictive Indexing”
○ Problem: Retrospectively making computationally expensive physical design changes at once
○ Continuously improves physical design using lightweight physical design changes

● SPST-Index: A Self-Pruning Splay Tree Index for Caching Database Cracking.
● “Progressive indexes: indexing for interactive data analysis”

○ Automatic index creation while providing interactive response times to incoming queries
○ Design allows queries to have a limited budget to spend on index creation

● “Cracking KD-Tree: The First Multidimensional Adaptive Indexing”
○ Generates a KD-Tree based on multidimensional range query predicates
○ Incrementally creates partial multidimensional indexes as a by-product of query processing.

● “GridTables: A One-Size-Fits-Most H2TAP Data Store’

Discussion:
Technical Question

The authors of adaptive adaptive indexing show
that their technique performs well in multiple
generic workloads. What type of workloads
would adaptive adaptive indexing not work well
for and why? Can you think of examples of
reads or updates that would be inefficient in this
schema?

