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delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete latency vs. data privacy

logical deletes keep around deleted entries, what if they leak?

what if we persisted the

deletes immediately?
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Key Weaving storage layout

1 page/delete tile

% tull page drops

1M 1KB entries, buffer = file = 256 pages
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Key Weaving storage layout

4 pages/delete tile

% tull page drops
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Key Weaving storage layout

1M 1KB entries, buffer = file = 256 pages
8 pages/delete tile ., 100-
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Key Weaving storage layout

16 pages/delete tile
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Key Weaving storage layout

32 pages/delete tile

% tull page drops

1M 1KB entries, buffer = file = 256 pages
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Key Weaving storage layout

1M 1KB entries, buffer = file = 256 pages
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Key Weaving storage layout

1M point lookups, buffer = file = 256 pages, T=10
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m suboptimal state-of-the-art design

for workloads with deletes
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