BOSTON | |
CS561: Data Systems Architectures

class 8

Efficient Deletes in Log-Structured Key-Value Storage

Protf. Manos Athanassoulis

BOSTON | |
CS561: Data Systems Architectures

class 8

Delete: the forgotten operator

Protf. Manos Athanassoulis

<your :

//

1)

avorl

COdo

ce da’

Ca S

cure>: :dele

LI UC

L

(key)

In-place out-of-place

B-Trees

of

Heap Files
(slotted pages)

In-place out-of-place

B-Trees

of

iInvalidate the entry

Heap Files
(slotted pages)

In-place out-of-place

B-Trees

of

iInvalidate the entry

Heap Files
(slotted pages)

In-place out-of-place

B-Trees

of

invalidate the entry

/Heap Files

(slotted pages)

In-place out-of-place

B-Trees

of

invalidate the entry

/Heap Files

(slotted pages)

In-place out-of-place

3 Trees)

d)

Heap Files
(slotted pages)

of

In-place

B-Trees

Heap Files

(slotted pages)

out-of-place

In-place out-of-place

B-Trees

of

Heap Files
(slotted pages)

In-place out-of-place

B-Trees

of

Heap Files
(slotted pages)

What Is the delete tradeoft? 2\

What Is the delete tradeoft?

\/
.II read

¢

P
” write

What Is the delete tradeoft?

\/
.II read

¢

P
” write

Deletes are amost exclusively /ogical

What Is the delete tradeoft?

\/
.II read

VS.

’
2
({

¢

P
” write

Deletes are amost exclusively /ogical

D-trees, slotted pages, LoM-trees invalidate the entry under deletion

37
\
7\

other tradeoffs?

delete tradeoftfs

delete tradeoftfs

delete latency vs. future read performance

delete tradeoftfs

delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete tradeoftfs

delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete latency vs. data privacy

delete tradeoftfs

delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete latency vs. data privacy

logical deletes keep around deleted entries, what if they leak?

delete tradeoftfs

delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete latency vs. data privacy

logical deletes keep around deleted entries, what if they leak?

delete latency vs. storage amplification

delete tradeoftfs

delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete latency vs. data privacy

logical deletes keep around deleted entries, what if they leak?

delete latency vs. storage amplification

logical deletes keep around deleted entries and metadata!!

delete tradeoftfs

delete latency vs. future read performance

e.qg., tree re-org, page re-org, more metadata in LSM

delete latency vs. data privacy

logical deletes keep around deleted entries, what if they leak?

what if we persisted the

deletes immediately?

delete tradeoftfs

delete latency vs. persistent delete latency

delete tradeoftfs

logical delete latency vs. persistent delete latency

Today'’s talk:

| ethe: A Tunable Delete-Aware
| SM-Based Storage Engine

Presented at SIGMOD 2020

Subhadeep Sarkar, Tarikul [slam Papon, Dimitris Staratzis, Manos Athanassoulis

BOSTON =
UNIVERSITY D|SC

Key-value pairs

RID timestamp name department

~ key value

RID timestamp name department

LSM-TREE

IR

LSM-TREE

IR

LSM-TREE

IR

cassandra

Even years later, Twitter doesn’t TechCrunch
delete your direct messages Rl

smaliDatlum | peletes are fast and slow in an LSM

“LSM-based data stores perform suboptlmauy fOr
- vvork\oads vv|th de\etes

| arge-scale
oroduction

ZippyDB*
25.2M/day

UP2X a

92.5M merge
through deletes

| arge-scale
production

T E . g - = e o =~ .. &
p
N t
' ‘o]
Dy ‘
n -
"R
f R "‘
s L.
i
By
B U
-
24
W 9
o
Ve
1 0y
K

25.2M/day

pox $

92.5M merge

through deletes

INnternal db
OPS

table drop a

data #

migration

cleanup #
/gC

Large-scale
proauction

ZippyDBa
25.2M/day

3
‘ ,:
v P 2 X # . ":l

92.5M merge

through deletes

INnternal db

oDS Privacy

table drop *

data *

migration (Califomié)
cleanup € T vcPDAR
/g E (Virginia)

o

D

GDPR O

(EU, UK) =

on-demand

delete all data for
user X within D days

A

CCPA

VCPDA

o

(California) = (Virginia)

©)

RJ "
rolling

keep deleting all data

older than D days

A reminder on how LSM-trees work!

39

l0g-structured merge-tree

:m O

buffer

l0g-structured merge-tree

:m O

puffer |2/0/1|4

l0g-structured merge-tree

:m O

buffer |1/214|0

l0g-structured merge-tree

:m O

buffer

buffer

l0g-structured merge-tree

(]

{0

L1

44

buffer

l0g-structured merge-tree

(]

{0

L1

45

buffer

l0g-structured merge-tree

(]

{0

L1

46

buffer

l0g-structured merge-tree

(]

{0

L1
| 2

compaction

47

buffer

l0g-structured merge-tree

{0

(]

L1 sizeratio=T
L 2
L3

exponentially larger capacity

438

buffer

l0g-structured merge-tree

(]

{0

|1
| 2
.3

49

buffer

l0g-structured merge-tree

(]

{0

|1
| 2
.3

50

buffer

l0g-structured merge-tree

(]

{0

|1
| 2
.3

51

buffer

l0g-structured merge-tree

(]

{0

|1
| 2
.3

52

buffer

l0g-structured merge-tree

(]

{0

|1
| 2
.3

53

l0g-structured merge-tree

w3 O)

buffer | 1
[2 burst of I/Os
| 3 orolonged write stalls

L4

54

g7
7\
How to reduce those?
O

l0g-structured merge-tree

{0

buffer | 1
[2 burst of I/Os
| 3 orolonged write stalls

L4

55

buffer

l0g-structured merge-tree

{0

(]

|1
| 2
.3

partial compaction

56

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

buffer

l0g-structured merge-tree

{0

(]

partial compaction

amortized compaction cost

3

l0g-structured merge-tree

:m O

fence
pointers

buffer

buffer

l0g-structured merge-tree

(]

{0

fence
pointers

4

)
? \

What is the cost of a read?

l0g-structured merge-tree

A O)]
get(®) —

fence
pointers_ %

buffer

one /O per run

l0g-structured merge-tree

:m O
get(d) —-.

Bloom fence
filters pointers

buffer

fewer disk |/Os

Now), let’s talk about deletes!

deletes in LSM-tree

delete g

deletes in LSM-tree

key value

delete := Insert tombstone m

~ key value

RID timestamp name department EEE& m

deletes in LSM-tree

key value

delete := Insert tombstone m

~ key value

timestamp name departiment RAK m

deletes in LSM-tree

:m O

delete(5) —

buffer

deletes in LSM-tree

:m O

buffer

deletes in LSM-tree

m MO
get(5) —

B‘OOm fence
filters pointers _—" "

buffer

the problems

the problems

out-of-place deletes

out-of-place deletes

2 | space amplitication

10

out-of-place deletes

L1

T) TN
2 | space amplitication

L3

| 4

11

out-of-place deletes

Wr|te amp\n‘lcatlon h

SIO

11

out-of-place deletes

Bloom
filters

Wr|te amp\n‘lcatlon h

space

12

out-of-place deletes

Bloom

. BOOF | d f o
fiters——_ ~poorrea pe S

i Wr|te amp\n‘lcatlon h

| SIO

12

out-of-place deletes

Bloom

. BOOF | d f o
fiters——_ ~poorrea pe S

i Wr|te amp\n‘lcatlon h

| SIO

12

the problems

e ———— e ———— - - S —

13

delete persistence latency

delete persistence latency

14

delete persistence latency

delete(5) within a threshold time: Din

15

delete persistence latency

delete(5) within a threshold time: Din

15

delete persistence latency

delete(5) within a threshold time: Din

15

delete persistence latency

delete(5) within a threshold time: Din

15

delete persistence latency

delete(5) within a threshold time: Din

15

delete persistence latency

delete(5) within a threshold time: Din

15

delete persistence latency

delete(5) within a threshold time: Din

t1 +’c2+t3

15

delete persistence latency

delete(5) within a threshold time: Din

’t.I +’t2+’t3

‘@

D

14

delete persistence latency

delete(5) within a threshold time: Din

|
, |

—_ unbounded delete
e latency

| 4

15

the problems

. poor read pert. |

e ———— e ——

- write amplification |

—— — —— — — — _ —— — ——— —— e —

T - unbounded delete |
- space amplification | . ’
- - - persistence latency

|

16

deletes on a secondary attribute

deletes on a seconaary attribute

delete all entries older than: D days

~ key value

timestamp name department

sort key delet key ?

17

deletes on a seconaary attribute

delete all entries older than: D days

~ key value

timestamp name department

sort key delet key ?

17

deletes on a seconaary attribute

delete all entries older than: D days

~ key value

RID TS flag timestamp name department EX&

sort ‘ key delete key

18

.keyl

deletes on a seconaary attribute

delete all entries older than: D days

value

RID

sort key

TS flag timestamp name department REXK

delet key

18

.keyl

deletes on a seconaary attribute

delete all entries older than: D days

value

RID

sort key

TS flag timestamp name department REXK

delet key

scattered occurrences

18

deletes on a seconaary attribute

delete all entries older than: D days

~key value |
RID TS flag timestamp name department EX& m
sort key delete key |_1

18

deletes on a seconaary attribute

delete all entries older than: D days

~ key value

RID TS flag timestamp name department EX&

SO rt key delet key I_ 1

| 2

~latency spir N

L3

- superﬂUOIs B

18

deletes on a seconaary attribute

delete all entries older than: D days

~ key value

RID TS flag timestamp name department EX&

SO rt key delet key I_ 1

| 2

~latency spir N

L3

- superﬂUOIs B

18

the problems

-1
p!

=1

* atency sp|kes 4

Din

~ unbounded delete |
- persistence latency |

;

the solution

latency spikes |

FADE

FAst DElete
delete(5) within a threshold time: Din

21

FAst DElete
delete(5) within a threshold time: Din

21

FAst DElete
delete(5) within a threshold time: Din

L—1
Z d; < Dy,
i=1

d; =1"-di—1

21

FAst DElete
delete(5) within a threshold time: Din

21

FAst DElete
delete(5) within a threshold time: Din

d

21

FAst DElete
delete(5) within a threshold time: Din

a
1d,

L—1
Z d; < Dy,
i=1

di =1 -d;—1

21

FAst DElete
delete(5) within a threshold time: Din

L—1
Z d; < Dy,
i=1

di =1 -d;—1

21

FAst DElete
delete(5) within a threshold time: Din

L—1
Z d; < Dy,
i=1

di =1 -d;—1

21

FAst DElete
delete(5) within a threshold time: Din

L—1
Z d; < Dy,
i=1

di =1 -d;—1

21

FAst DElete
delete(5) within a threshold time: Din

L—1
Z d; < Dy,
i=1

di =1 -d;—1

21

FAst DElete
delete(5) within a threshold time: Din

L—1
Z d; < Dy,
i=1

di =1 -d;—1

21

—Ast Delete

pbreaking ties in practical workloads

22

—Ast Delete

pbreaking ties in practical workloads

a
1d,

22

—Ast Delete

pbreaking ties in practical workloads

©

22

—Ast Delete

pbreaking ties in practical workloads

a
1d,

22

—Ast Delete

pbreaking ties in practical workloads

a
1d,

22

Wtin h

 timely delete persistence

—Ast Delete

1M 1KB entries, 5% deletes, 1MB bufter, T=10
x10°>

\& U9 AN N
S O O O
| | |

e
-

cumulative #tombstones
-

00 450 1800
age of files (s)

23

—Ast Delete

8 0.05 - ©&— RocksDB <
g 004 4 5 FADE/16% -
34% —<— FADE/25%
= 003 1 < FADE/50% ¢
S — W Z
‘reduced space amplification | v 9 0.01 - :: y ra >D€ >D<
v O 2 4 6 3 10

% deletes 1n workload

24

—Ast Delete

read throughput (ops/s)

-
|

oA
—=%
O ©

o—"5

/A
N\

©— RocksDB
=— FADE/16%

—<— FADE/25%

<— FADE/50%

0 2 4 6 8 10
% deletes 1n workload

25

—Ast Delete

N
~
|

©— RocksDB
H— FADE/16%

—<— FADE/25%
S~ FADE/50%

0 2 4 6 8§ 10
% deletes 1n workload

WY
o0
|

Improved read performance
1.2-1.4X

|

QN
|

-
|

total data written (GB)
®

—Ast Delete

% 1M 1KB entries, 1MB buffer, T=10
=1.5-
P
o3
09
L1.046 S,)
| S
1.2-1.4x <
T ———— 00.5-
'reduced space amplification | v N o— RocksDB
L e — TES Y
a —<%— FADE/25%
8 OO_ | | | | |
= SNI SN2 SN3 SN4 SN5
snapshot #

27

1

l
|

—Ast Delete

1M 1KB entries, 1M

3 puffer, T=10

snapshot #

-

>

=1.5-

=

2

210{o—=o 8
>

O

o

©0.5-

:T‘; ©— RocksDB

= —<— FADE/25%

SOO_ | | | | |
= SN1 SN2 SN3 SN4 SN5

25

Key Weaving storage layout

delete all entries older than: D days

scattered occurrences

27

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin=1 . Smax=99
Dmin=10:: Dmax=90p

page 1

:

4

14

15

19

20

24

34p

69D

3D

/9D

80D

23D

24p

Smin:1 .. Smax:24
Dmin=3D :: Dmax=80p

page 2

Smin=29 . Smax=6o
Dmin=9D :: Dmax=90p

29

32

33

40

44

52

56

60

88p

90D

28D

/4p

9p

/6D

81p

04p

Smin=61 .. Smax=79
Dmin=1D :: Dmax=89p

page 3

Smin:8o .. Smax:99
Dmin=7D :: Dmax=85D

paged4 page3 page? page T

61

03

6/

71

/2

73

/8

79

/5D

82D

6/D

/7D

89D

65D

12p

page 4

80

384

86

87

91

94

95

99

/0p

41p

62D

25D

85p

59p

19D

28

delete all entries with timestamp <= 65p

Key Weaving storage layout

Smin= 1:: Smax=99

Dmin=1D :: Dmax=90p

page 1

1

4

14

15

19

20

24

paged4 page3 page? page T

34p

69D

3D

/9D

8p

80D

23D

24p

Smin:1 .. Smax:24
Dmin=3D :: Dmax=80p

page 2

Smin=29 . Smax=6o
Dmin=9D :: Dmax=90p

29

32

33

40

44

52

56

60

88p

90D

28p

/4p

9p

/6D

81p

64p

Smin=61 .. Smax=79
Dmin=1D :: Dmax=89p

page 3

Smin:8o .. Smax:99
Dmin=7D :: Dmax=85D

61

03

67

71

/2

73

78

79

/5D

82D

67D

/7D

89D

65D

12p

page 4

80

84

86

87

91

94

95

99

/0p

41p

62p

25p

85p

59p

19p

11/0

11/0

11/0

11/0

29

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin=1 .. Smax=99
Dmin=10:: Dmax=90p

Smin=1 . Smax=24
Dmin=3D :: Dmax=80p

Smin=29 . Smax=6o
Dmin=9D :: Dmax=90p

Smin=61 . Smax=79
Dmin=1D :: Dmax=89p

Smin=80 .. Smax=99
Dmin=7D :: Dmax=85D

paged4 page3 page? page T

30

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin:1 .. Smax:99
Dmin=1D :: Dmax=90p

Smin:1 .. Smax:24
Dmin=3D :: Dmax=80p

Smin=29 . Smax=6o

Dmin=9D :: Dmax=9OD

Smin:61 .. Smax:79
Dmin=1D :: Dmax=89p

page 4 page 3“ page 2 page 1
delete tile 2 § delete tile 1

Smin=80 .. Smax=99
Dmin=7b :: Dmax=850D

partitioned on S

30

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin=1 . Smax=99
Dmin=1D :: Dmax=90p

Smin:1 .. Smax:24
Dmin=3D :: Dmax=80p

Smin=29 .. Smax=60
Dmin=9D :: Dmax=90p

page 2 page 1
| delete tile 1

partitioned on S

31

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin=1 .. Smax=6o
Smin:1 . Smax:99 Dmin:3D s DmangoD
Dmin=1D :: Dmax=90pD

Smin=1 . Smax=24
Dmin=3D :: Dmax=80p

Smin:1 .. Smax:24
Dmin=3D :: Dmax=80p

Smin=29 .. Smax=6o
Dmin=9D :: Dmax=90p

delete tile 1

Smin=29 .. Smax=6o
Dmin=9D :: Dmax=90p

ey

page 2 page 1
| delete tile 1

partitioned on S

Key Weaving storage layout

delete all entries with timestamp <=

65p

Smin:1 .. Smax:99
Dmin=1D :: Dmax=90p

Smin=1 .. Smax=6o
Dmin=3D :: Dmax=90p

page 1

:

4

14

15

19

20

24

Smin:1 .. Smax:24
Dmin=3D :: Dmax=80p

Smin=29 .. Smax=60
Dmin=9D :: Dmax=90p

page 2 page 1

Smin=1 . Smax=24
Dmin=3D :: Dmax=80p

34p

69D

3D

/9D

80D

23D

24p

Smin=29 .. Smax=6o
Dmin=9D :: Dmax=90p

delete tile 1

page 2

29

32

33

40

44

52

56

60

| delete tile 1

partitioned on S

88p

90p

28D

/4p

9p

/6D

81p

04p

31

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin:1 .. Smax:99
Dmin=1D :: Dmax=90p

Smin=1 .. Smax=6o
Dmin=3D :: Dmax=90p

page 1

15

44

20

24

33

60

Smin:1 . Smax:60
Dmin=3D :: Dmax=064p

Smin=4 i Smax=56
Dmin=9D :: Dmax=90p

page 2 page 1

Smin=1 . Smax=6o
Dmin=3D :: Dmax=64p

9p

23D

24p

28D

34p

04p

Smin=4 . Smax=56
Dmin=69D::Dmax=90p

delete tile 1

52

14

19

56

29

32

| delete tile 1

partitioned on S

partitioned on

/6D

/79D

80D

81p

88p

90D

31

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin:1 .. Smax:99
Dmin=1D :: Dmax=90p

Smin=1 .. Smax=6o
Dmin=3D :: Dmax=90p

page 1

9

15

44

20

24

33

60

Smin:1 . Smax:60
Dmin=3D :: Dmax=064p

Smin=4 i Smax=56
Dmin=9D :: Dmax=90p

page 2 page 1

Smin=1 . Smax=6o
Dmin=3D :: Dmax=64p

3D

8p

9p

23D

24p

28p

34p

64p

Smin=4 . Smax=56
Dmin=69D::Dmax=90p

delete tile 1

page 2

40

52

14

19

56

29

32

| delete tile 1

partitioned on S

partitioned on

69D

/4p

/6D

/79D

80D

81p

88p

90D

drop
Page

31

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin:1 .. Smax:99
Dmin=1D :: Dmax=90p

Smin=1 .. Smax=6o
Dmin=3D :: Dmax=90p

page 1

1

9

15

20

24

33

44

60

Smin:1 . Smax:60
Dmin=3D :: Dmax=064p

Smin=4 i Smax=56
Dmin=9D :: Dmax=90p

page 2 page 1

Smin=1 . Smax=6o
Dmin=3D :: Dmax=64p

34p

3D

8p

23D

24p

28p

9p

64p

Smin=4 . Smax=56
Dmin=69D::Dmax=90p

delete tile 1

page 2

4

14

19

29

32

40

52

56

| delete tile 1

partitioned on S

partitioned on

69D

/79D

80D

88p

90D

/4p

/6D

81p

sorted on S

drop
Page

31

Key Weaving storage layout

delete all entries with timestamp <= 65p

Smin:1 .. Smax:99
Dmin=1D :: Dmax=90p

Smin=1 .. Smax=6o
Dmin=3D :: Dmax=90p

page 1

1

9

15

20

24

33

44

60

Smin:1 . Smax:60
Dmin=3D :: Dmax=064p

Smin=4 . Smax=56
Dmin=9D :: Dmax=9OD

Smin:61 .. Smax:79
Dmin=1D :: Dmax=89p

Smin=80 .. Smax=99
Dmin=7D :: Dmax=850D

page 4 page 3 page 2 page 1

Smin=1 . Smax=6o
Dmin=3D :: Dmax=64p

34p

3D

8p

23D

24p

28p

9p

64p

Smin=4 . Smax=56
Dmin=69D::Dmax=90p

delete tile 1

page 2

4

14

19

29

32

40

52

56

delete tile 2 delete tile 1

partitioned on S

partitioned on

69D

/79D

80D

88p

90D

/4p

/6D

81p

sorted on S

drop
page

31

delete all entries with timestamp <= 65p

Key Weaving storage layout

Smm:1

.. Smax:99

Dmin=10 :: Dmax=90p

Smin:1 i, Smax:6o
Dmin=3D :: Dmax=90pD

page 1

1

9

15

20

24

33

44

60

Smin:1 ..
DminZSD ..

Smax:60
Dmax=64D

Smm=4ﬂ
Dmin:9D .

Dmax=9OD

Smax=56

Smm:67ﬂ
Dmin:1 D ..

Smax:99
Dmax=62D

Smin=61 ..
Dmin=065D:

page 4 page 3 page 2 page 1

:Dmax=89p

Smax=94

delete tile 2 delete tile 1

Smin=1 . Smax=6o
Dmin=3D :: Dmax=64p

34p

3D

8p

23D

24p

28p

9p

64p

Smin=4 . Smax=56
Dmin=69D::Dmax=90p

delete tile 1

page 2

4

14

19

29

32

40

52

56

69D

/79D

80D

88p

90D

/4p

/6D

81p

Smin:61 .. Smax:99
Dmin=1b :: Dmax=89p

page 3

partitioned on S

67

79

84

86

87

91

95

99

Smin:67 . Smax:99
Dmin=1D :: Dmax=62pD

1p

12p

41p

62p

7p

25D

59p

19p

Smin=61 i Smax=94
Dmin=65D::Dmax=89p

delete tile 2

page 4

o1

63

71

/2

/3

78

80

94

partitioned on

/5D

32D

6/D

/7D

39D

65p

/0D

85p

sorted on S

drop
Page

drop
page

11/0

31

Key Weaving storage layout

1 page/delete tile

% tull page drops

1M 1KB entries, buffer = file = 256 pages

ek

D B N OO0 O

o O O O O
I I I I I

O _
1 % 2% 3% 4% S%
fraction of deleted entries (%)

32

Key Weaving storage layout

4 pages/delete tile

% tull page drops

™M 1K

3 entries, buffer = file = 256 pages

—

D B O OO0 O

o O O O O
| | | | |

—1 h=
§h—1

4

0-¢

————PH—H——

é

1% 2% 3% 4% 5%

fraction of deleted entries

(%)

32

Key Weaving storage layout

1M 1KB entries, buffer = file = 256 pages
8 pages/delete tile ., 100-
Q,
S 80-
o
Qb)b 60 -
<
S 40-
2 20- h=3
S 0lo—e——_S0=1
I I I I I
1 9% 29 3% 4% J%

fraction of deleted entries (%)

32

Key Weaving storage layout

16 pages/delete tile

100

.
O

% tull page drops
N
-

1M 1KB entries, buffer = file = 256 pages

1% 2% 3% 4% 5%
fraction of deleted entries (%)

32

Key Weaving storage layout

32 pages/delete tile

% tull page drops

1M 1KB entries, buffer = file = 256 pages

100 -
50~ h=32
60 o 7 v
7 h=16

40 -
20 - h=8
0| e——% Y

1% 2% 3% 4% 5%
fraction of deleted entries (%)

32

Key Weaving storage layout

1M 1KB entries, buffer = file = 256 pages

» 100~
oF
2 80-
o
L — gb 60 -
- reduced latency spikes | S
— ——— —— O 40-
—
~ full page drops reduces | xS
* superfluous I/Os ,, 018

1% 2% 3% 4% 5%
fraction of deleted entries (%)

32

Key Weaving storage layout

1M point lookups, buffer = file = 256 pages, T=10

N
e
| higher lookup cost T = 1.5 — Non-zero result lookup
- ~ —x<X— Zero result lookup /F
7
I 8 1.0-+—+—+—+—+F
- reduced latency spikes | .
i A AL =
~ _
- S 0.5
full page drops reduces | —
* superfluous 1/Os @0,0—%ﬁ >|4 %
I — S

1 2 4 8 16 32 64
delete—tile granularity (log scale)

33

m suboptimal state-of-the-art design

for workloads with deletes

.
ek

#5 ":v,@'
X k,“:.‘x ']]
#5a \ P
. 9 &

N o]]

UsSIing latel ICy-d riven con |pact|0| 1S

— KiWi supports efficient
@) secondary range deletes

using key-interweaved data storage

36

BOSTON | |
CS561: Data Systems Architectures

class 8

Efficient Deletes in Log-Structured Key-Value Storage

Protf. Manos Athanassoulis

