
class 7

Fast Scans on Key-Value Stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

Fast Scans on Key-Value Stores (KVS)
Key-Value Stores are designed for transactional workloads (put and get operations)

Analytical workloads require efficient scans and aggregations
(typically offered by column-store systems)

Can we do both in one system?

Why combine KVS and analytical systems?

memory

flash
HDD

cheaper and cheaper storage

more data ingestion

need for write-optimized
data structures

what about analytical queries?

Both transactional and analytical systems

Most organizations maintain both
• transactional systems (often as key-value stores)
• analytical systems (often as column-stores)

problems?

requires additional expertise and management (e.g., two DBAs)

harder to maintain (more systems, more code)

time consuming data integration/transfer

1140

46 36

2.4 1.8
0.78

0.197
0.133

0.084

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

Cass
andra

RAMCloud
HBase

Rocks
DB

Kudu

MemSQ
L

TellSt
ore-Row

TellSt
ore-Lo

g

TellSt
ore-Column

Sc
an

 T
im

e
(s

ec
on

ds
)

Scan Time of 50M records (~4GB of data)Log scale!

Prohibitively slow!

Acceptable performance!

Goal!

Goals of this paper

Bridge the conflicting goals of get/put and scan operations

get/put operations need sparse indexes
scans require locality (relevant data to be packed together)

we will discuss how to compromise, via the design of Tellstore

how to amend the SQL-over-NoSQL architecture for mixed workloads

SQL over NoSQL

Elasticity

Snapshot Isolation

Support for:
Scans
Versioning
Batching

Scans

selection

projection

(simple) aggregates

shared scans
remember them?

Versioning

multiple versions
through timestamps

garbage collection

discarding old versions
during scans might be costly

Batching

batch several
requests to the
storage layer

amortize the
network time

Challenges

scans vs. get/put
#1, John, 2/4/88, Boston

2/4/88
2/1/87
7/7/93
4/1/92
3/9/91
9/3/96

Scans need columnar locality

get/put need row-wise locality

why?

Challenges

scans vs. get/put

scans vs. versioning

#1, John, 2/4/88, Boston, v1

versioning reduces locality in scans

#1, John, 2/4/88, Cambridge, v2

checking for the latest version in scans needs CPU time

Challenges

scans vs. get/put

scans vs. versioning

scans vs. batching

batching multiple scans or multiple put/get requests is ok

but …

batching scans and puts/gets is a bad idea!

why?

puts/gets need fast predictable performance

scans inherently have high and variable latency

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured

How to design KVS for efficient scans?

Key design decisions

(A) Updates in-place log-structured delta-main

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

in-place log-structured delta-main

column

A B C D A B C D A B C D

PAX (columnar per page)

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

in-place log-structured delta-main

column (PAX) row

A B C D

A B C D

A B C D

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered A B C D (v1)

A B C D (v2)

A B C D

any other options?

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered

chained

A B C D (v1)

A B C D

A B C D

A B C D (v2)

How to design KVS for efficient scans?

Key design decisions

(A) Updates

(B) Layout

(C) Versioning

in-place log-structured delta-main

column (PAX) row

clustered chained

what comes as a result of versioning?

Garbage Collection (GC)

(A) Periodic

(B) Piggy-backed GC during scans

separate dedicated thread(s)

increases scan time but frequently read tables benefit

avoids re-reading for GC (since data is already accessed)

Design Space

Updates Layout Versioning GC

in-place
log-structured

delta-main

column (PAX)
row

clustered
chained

periodic
piggy-backed

×× ×

hybrid designs are also valid!
should we consider all possible designs?

Design Space

Updates Layout Versioning GC

in-place
log-structured

delta-main

column (PAX)
row

clustered
chained

periodic
piggy-backed

×× ×

some combinations do not make sense:
log-structured & column < delta-main & column
log-structured & clustered < log-structured & chained

note that each combination here represents multiple options

Design Space

Updates Layout Versioning GC

in-place
log-structured

delta-main

column (PAX)
row

clustered
chained

periodic
piggy-backed

×× ×

focus on two extremes:
(1) log-structured & row & chained
(2) delta-main & column & clustered

TellStore-Log

TellStore-Col

TellStore-Log

immutable log

head

lock-free hash table

previous entry for the same key

one log per table (locality for scans)
inserts, updates, and deletes are all logged

TellStore-Log Insertion

Hash Table

Log

a record is considered valid after the hash table pointer is updated

the log contains rows

TellStore-Log Update

Hash Table

Log

previous pointer

the log contains rows

TellStore-Log Delete

Hash Table

Log

previous pointer

the log contains rows

D

TellStore-Log Garbage Collection

Hash Table

Log

the log contains rows

D

invalidated entries hurt scan performance

during scan, health (% of invalid entries) per page is calculated

if health < threshold, page is re-written in the head of the log &
update hash table & old page is reclaimed

TellStore-Log in a nutshell

log-structure: efficient puts
hash-table: efficient gets (always points to the latest entry)
snapshot Isolation: high throughput, no locks needed
self-contained log: efficient scans (valid from/to needed)
lazy GC: Optimize tables that are scanned

TellStore-Col
four data structures

before inserting we query
new entries go to insert log

updates go to update log

logs are write-optimized
row-oriented: append-only

main is read-only
columnar: read-optimized

TellStore-Col Layout

fixed-size data is stored in columnar format

variable-size data is index in columnar format
but stored in row-wise format

why row-wise?

(1) faster materialization (contiguous copying)

(2) less metadata (one offset for many columns)

TellStore-Col Versioning

in main storage multiple versions
are clustered contiguously

newest pointers
may exist

previous pointers may
exist only in update log

logs work like before
and they are row-wise

TellStore-Col Insertion

Hash Table

Insert Log

Main

Update Log

TellStore-Col Update

Hash Table

Insert Log

Main

Update Log

newest pointer

TellStore-Col Update

Hash Table

Insert Log

Main

Update Log

newest pointer

previous pointer
newest pointer

TellStore-Col Garbage Collection

Hash Table

Insert Log

Main

Update Log

newest pointer

previous pointer
newest pointer

dedicated thread
(conversion from row to column)

all main pages with invalid entries

all pages from insert log + update
to main

run GC frequently + truncate logs

TellStore-Col in a nutshell

delta-main: compromise between puts and scans
hash-table: efficient gets (always points to the latest entry, may need

one more pointer to follow)
PAX layout: minimize disk I/O, maintain locality for scans
separate insert/update logs: efficient GC
eager GC: improve scans

Implementation Details
scans are assigned to dedicated threads scan coordinator for shared scans

Implementation Details
efficient predicate evaluation via code generation and predicate pushdown

all queries in CNF

reuse work

Yahoo! Cloud Serving Benchmark# (YCSB#)

main_table (P, A, B, C, D, E, F, G, H, I, J) P: 8-byte ley | A-H: 2-bytes, 4-bytes, 8-bytes | I-J: strings 12-16 bytes

based on YSCB, a put/get benchmark

Experiments: Transactional Workload

Kudu is used as it was the most competitive to begin with

All TellStore approaches are not that far!

Experiments: Scans
10x faster scans!

several orders of magnitude
faster scans!

Q3 does not have projections,
so no benefit from columnar

Experiments: Mixed Workload

Contrary to competition,
scan perf. is stable with
more gets/puts

In the absence of updates
TellStore scales perfectly:
scans+gets go to different
cores

With 50% updates
eventually logging wins

Things to remember

KVS vs. Scans: how to compromise, navigate the design space

üdelta-main vs. log-structure
üchained vs. clustered versions
ürow-major vs. column-major
ülazy vs. eager GC

class 7

Fast Scans on Key-Value Stores

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

