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Project Submission & Presentations

April 27t 11:59pm: submit preliminary project report & code

April 28" and May 3™: 5 + 5 15-minute presentations (12+3 for questions)
(select your slot in piazza)

May 6% 11:59pm (hard deadline): send final report & updated code
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Guest lecture on “Building a Healthcare Computational Engine:
The case for purpose-built systems”

BOSTON Angelo Kastroulis, Ballista Technology Group
UNIVERSITY
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Motivation

In the era of big data, exact analytical query processing is too
“expensive”.
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Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." Proceedings
of the 8th ACM European Conference on Computer Systems. ACM, 2013.




Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

A large class of analytical queries takes the form:
SELECT AF(y) FROM table
WHERE x BETWEEN Ib AND ub
[GROUP BY z]

Such queries are very popular on emerging datasets/workloads: 10T,
sensors, scientific, etc.
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Approximate Query Processing
Targeting Analytical Queries — why?

Goal: fast data analytics over large volumes of data
Tradeoff: accuracy vs. latency — why?

Is an accurate response always necessary?
exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling
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Current Solutions

* Online Aggregations
* Data Sketches
* Sample-based Approaches (the dominating approach)
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Uniform Sampling

Stratified Sampling

Hash Sampling

mmel Limited supported aggregate functions

e Still, very time-consuming

ml  Space Overhead — samples can be very large

e Support for join (multi-way)

e SUpport for nesting




Query-time sampling

Queries explicitly specify sample operations
Sample then execute query

Uniform sampling: may miss small groups
Distinct sampler: online sampling of distinct values

With joins: want to sample before joins not after — why?
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Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated — which?
Query result

Estimated error
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Data Table
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expected mean: 1003
[990, 1020] with confidence 95%
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expected mean: 1002
[995, 1007] with confidence 96%



\ expected mean: 1001

Data Table [1001, 1001] with confidence 100%
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Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated — which?
Query result
Estimated error
Hard to execute efficiently — why?
Random sample = Random access
Random samples might contain few rows that join

Can be improved using join indices
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Queries on Pre-Computed Samples

Low latency because sampling cost is assumed offline
operate only on the sample

Additional space (to keep sample)

Cannot provide fixed error bounds
Error bounds are data dependent (high variance = large error)

They can be arbitrarily large
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Data Table
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Data




SQL additions

Aggregate is computed on a group
Group is defined based on certain columns
Extend specification with bounds

Error-bound query Time-bound query

SELECT count (*) SELECT count (*)

FROM Sessions FROM Sessions

WHERE Genre= western WHERE Genre= western
GROUP BY OS GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95% WITHIN 5 SECONDS
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Oftline vs online sampling

Offline Online
Assumption: (partially) known workload No assumption
Speedup: Hig'h - Low
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Oftline vs online sampling

Assumption: (partially) known workload No assumption

e

[Speedup: High Low J

e T e e
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Oftline vs online sampling

Assumption: (partially) known workload No assumption

Speedup: High Low

Both are helpful:
» offline sampling is used for (partially) predictable workloads,
* online sampling is for the rest.

BOSTON
UNIVERSITY



DBEst: transparent AQP

Very small query execution times (e.g., ms),

With small state (memory/storage footprint) (e.g., KBs), and
High accuracy (e.g., a few % relative error)

Regardless of data size?

YES! (for a large class of analytical queries)
rests on simple SML models
Built over samples of tables
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DBEst Contributions

DBEst shows that
Models can be built over small samples
Can generalize nicely, ensuring accuracy
Model state is small (KBs)
AQP over models is much faster than over samples
Model training overhead is acceptable — inline with sample generation.
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DBEst Architecture

DBEst QP Engine Data Store
Samples —
Exact QP
v A
Catalog :
¢ el \'l
Models 2 U0 S
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DBEst and ML models

which aggregate functions are very hard to
. Pro b | em SQL query answer via approximate query processing?
SELECT AF(y) from table
WHERE x between low and high
[GROUP BY z]

 What models?

which are easy?

e LR, PR...
Regression y= R(X) « XGBoost, GBoost...

Density Estimator : Kernel Density

Nearest neighbor method
D(X) e Orthogonal series estimator
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Density Estimator

0.25

- Histograms is the simplest form of density estimator

. DBEst is gradually learning a function

that approximates the actual density function of the data
0.10
e.g., “how many values exist between low and hi?”
0.05
0.00
-3 -6 -4 -2 0 2 - 6 8

*image from wikipedia
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Regression Model

0.14 1

A regression model describes the relationship between two variables
y =F(x)

0.12 1

0.104

DBEst uses a regression model to capture “matches” from selection

0.06 1

. e.g., “which values of y exist for x between low and hi?”

0.02 1
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How to use regression and density estimation to answer queries?

SELECT count (*)
FROM Table COUNT(y) ~ N

WHERE x between 1lb and ub

fraction of values in [lb,ub]

AVG(y) = Ely]

SELECT avg(y) ~ E[R()] relationship of x values with y values
FROM Table

WHERE x between 1lb and ub

fraction of values in [lb,ub]

SUM(y) = COUNT(y) - AVG(y)
~ COUNT(y) - E[R(x)]

SELECT sum(y) b e
FROM Table -~ [ O e S DIRG)
WHERE x between lb and ub Ib IZbD(x)dx

ub
=N - /1 . D(x)R(x)dx
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How to use regression and density estimation to answer queries?

VARIANCE_y(y) = E [4?] - [E[y]]?

SELECT wvariance (y) Q,E[Rz(x)] — [E [R(x)]]?

FROM Table b b 2

WHERE x between 1lb and ub _ flb R*(x)D(x)dx ~ flb R(x)D(x)dx‘
" D(x)dx “? D(x)dx

PERCENTILE.

If the reverse of the CDF, F~(p), could be obtained, then the
p'" percentile for Column x is

SELECT percentile (x,p) =
a=F(p) (5)

FROM Table

Note that F~1(p) is derived using F(p) = _pl.nf D(x)dx
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More support on SQL

SELECT avg (y) AVG(y) = Ely]

FROM Table ~ E [R(x1, x2)]
WHERE x1 between 1bl and ubl ub, rub2
AND x2 between 1b2 and ub2 flbl o D(x1, x2)R(x1, x2)dxodx;

uby rub
flbl | Ib, * D(x1, x)dx2dx

Supporting GROUP BY

* build models for each group by value,
e create model bundles:

* E.g., each bundle stores ~500 groups
» Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).

Supporting join
 Join table is flattened -> make samples -> build models.
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Evaluation

systematically showing sensitivities on
* range predicate selectivity + sample sizes + AFs

Performance under Group By and Joins

Comparisons against

 State of the art AQP (VerdictDB and BlinkDB)
 State of the art columnar DB (MonetDB)

Using data from TPC-DS and 3 different UCI-ML repo datasets.
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Experimental Setup

Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD
Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5

Query types:
* Synthetic queries: 0.1%, 1%, to 10% query range
 Number of queries: vary between 30 to1000 queries.
e Complex TPC-DS queries: Query 5, 7, and 77.

Compared against VerdictDB, BlinkDB and MonetDB, for error

e VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst
is also evaluated)

Report execution times + system throughput for the parallel version
Report performance of joins and group by
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Dataset: TPC-DS

Performance — Sensitivity Analysis
Query range effect e

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% 1
] 0.1% query range
] I 1.0% query range
] BN 10.0% query range
& ]
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Performance — Sensitivity Analysis

Query range: 1%

S a m p ‘ e S I Ze effe Ct 1200 syn’Fhetic queries

Column pair:
[ss_list_price, ss_wholesale_cost]
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Performance Comparison

~100 queries, involving 16

TPC-DS dataset

Sample size: 10k, 100k
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Pe rfO r m a n Ce CO m p a ri SO n 2.6 billion records, 1.4TB

Query range: 0.1%, 0.5%, 1.0%

CC P P d a ta S e-t Ii(a)iSrst:.|ueries, involving 3 column

Sample size: 10k, 100k
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SELECT AF(ss_list_price)

Performance Comparison

GROUP BY ss_store_sk

Group By 5o 57 v

* Sample size: 10k
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SELECT AF(ss_wholesale_cost), AF(ss_net_profit)
FROM store_sales, store

Performance Comparison Join ity S

* 42 queries.
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Parallel Query Execution
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Limitations

* Group By Support ->too many groups
* Model Training time %, Query Response time 1\, space overhead 1.

* No error guarantee
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Contribution & Conclusion

* Presented DBEst: a model-based AQP engine, using simple SML models:
* Much smaller query response times
* High(er) accuracy
* Much smaller space-time overheads
* Scalability

* Ensuring high accuracy, efficiency, scalability with low money investments -
- resource (cpu, memory/storage/ network) usage.

e Future work: more efficient support for
* Joins
e Categorical attributes
* Improved parallel/distributed DBEst
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