

class 24

Learned (Approximate) Query Processing

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

with slides from Marco Serafini and Peter Triantafillou

Project Submission & Presentations

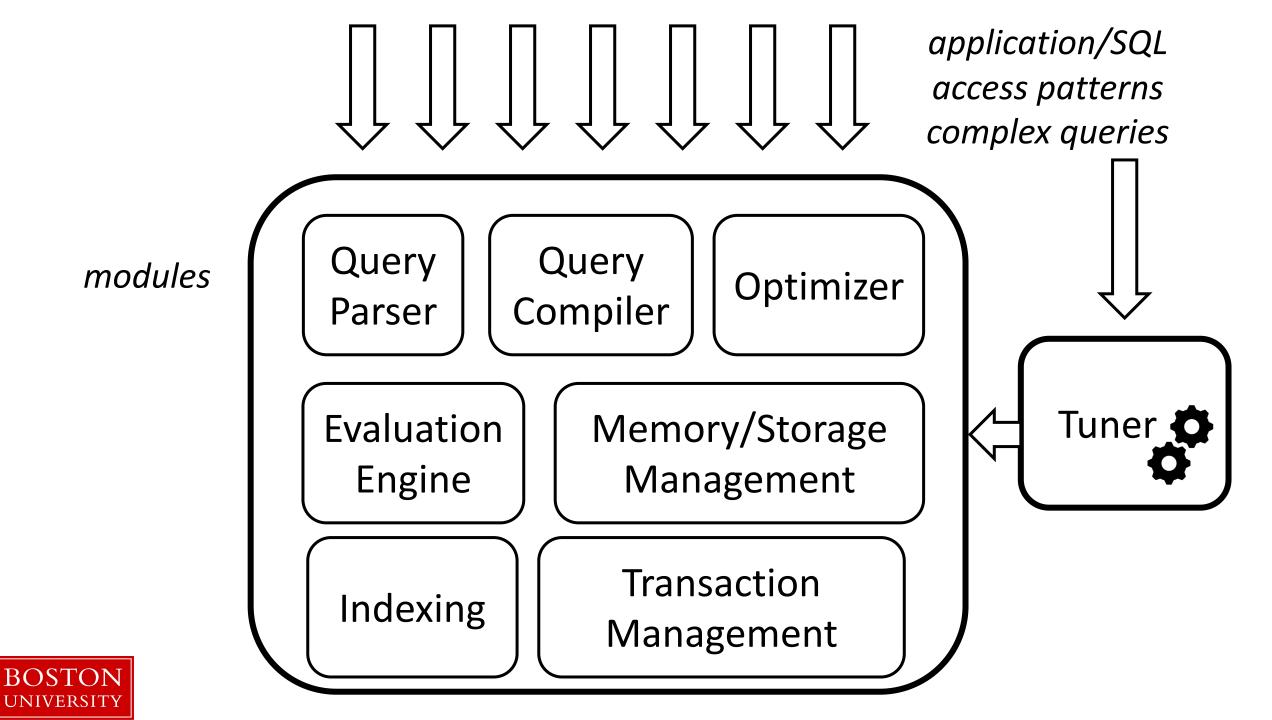
<u>April 27th, 11:59pm</u>: *submit preliminary project report & code*

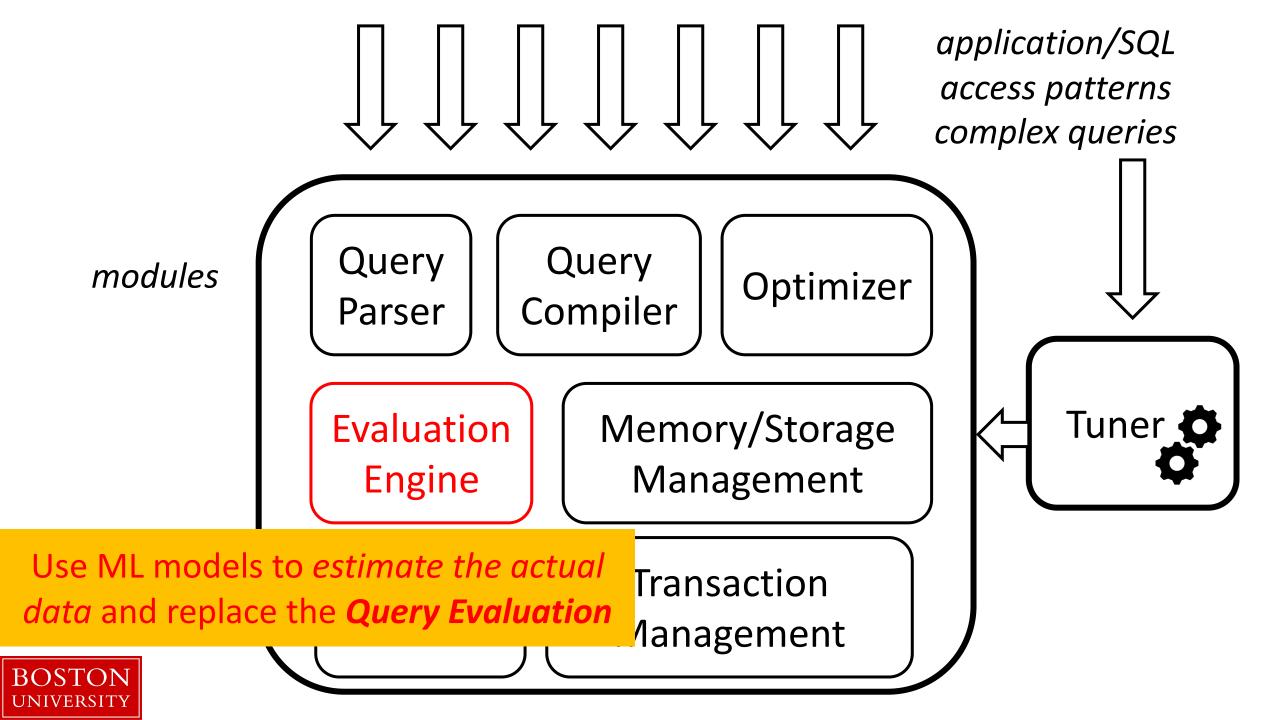
<u>April 28th and May 3rd</u>: **5 + 5 15-minute presentations (12+3 for questions)** (select your slot in piazza)

May 6th, 11:59pm (hard deadline): *send final report & updated code*

Guest lecture on "Building a Healthcare Computational Engine: The case for purpose-built systems"

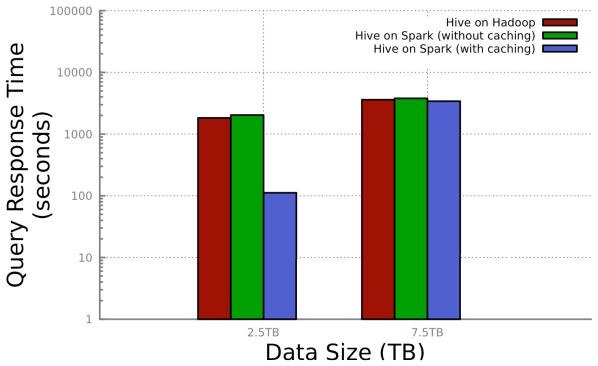
Angelo Kastroulis, Ballista Technology Group





Motivation

In the era of big data, exact analytical query processing is too "expensive".



Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." *Proceedings* of the 8th ACM European Conference on Computer Systems. ACM, 2013.

Motivation

In the era of big data, exact analytical query processing is too "expensive".

A large class of analytical queries takes the form:

SELECT AF(y) FROM table

WHERE **x** BETWEEN lb AND ub

[GROUP BY **z**]

Such queries are very popular on emerging datasets/workloads: IoT, sensors, scientific, etc.

Approximate Query Processing

Targeting *Analytical* Queries – why?

Goal: fast data analytics over large volumes of data **Tradeoff:** accuracy vs. latency – why?

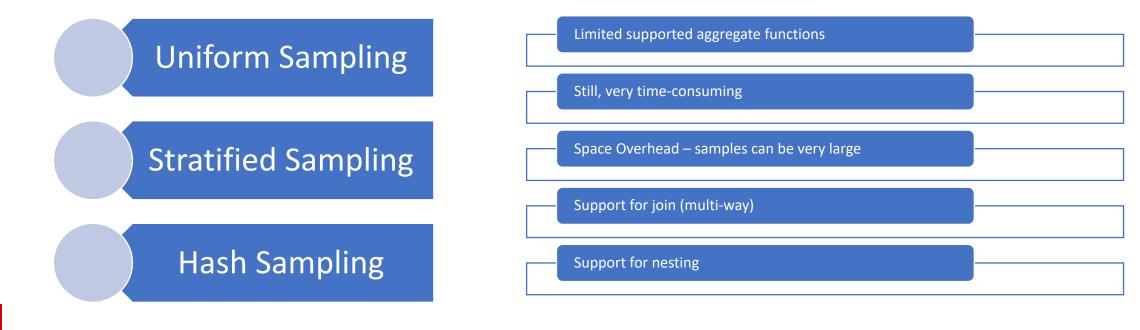
Is an accurate response always necessary?

exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling

Current Solutions

- Online Aggregations
- Data Sketches
- Sample-based Approaches (the dominating approach)



Query-time sampling

Queries *explicitly specify* sample operations

Sample then execute query

Uniform sampling: may miss small groups Distinct sampler: online sampling of distinct values

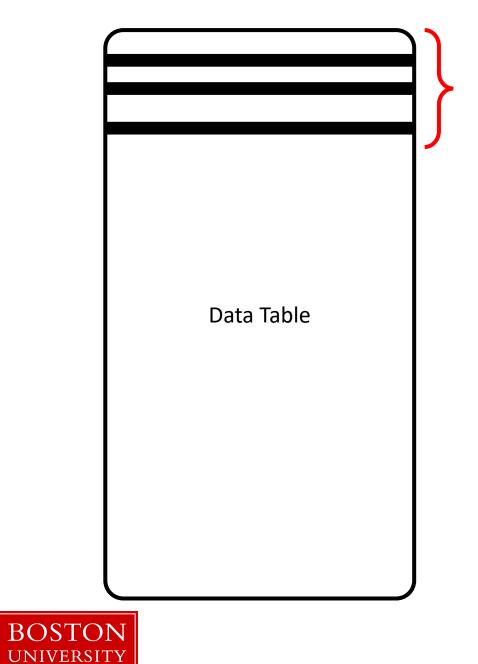
With joins: want to sample *before* joins not after – why?

Online aggregation

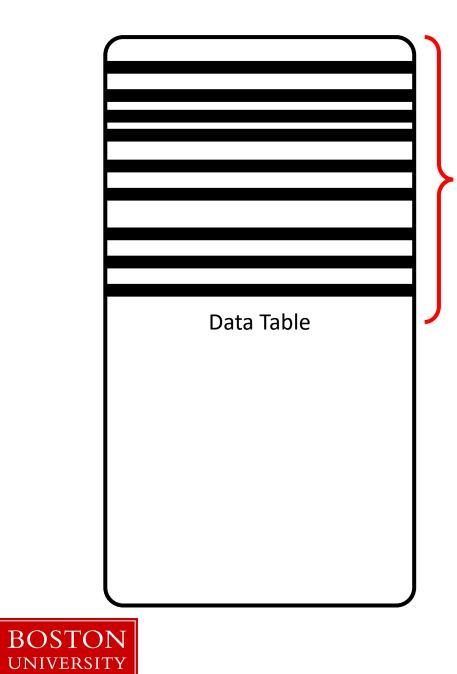
Execute query on growing random samples

Preliminary outputs are constantly updated – which?

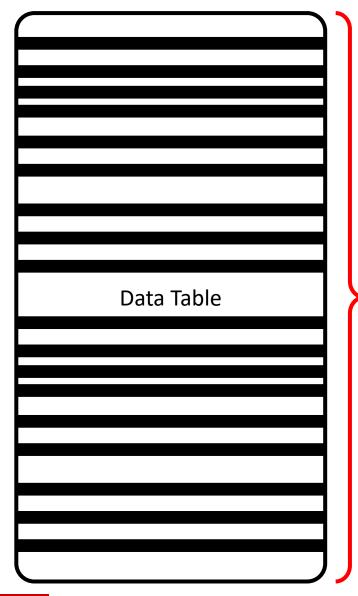
- Query result
- **Estimated error**



expected mean: 1003 [990, 1020] with confidence 95%



expected mean: 1002 [995, 1007] with confidence 96%



expected mean: 1001 [1001, 1001] with confidence 100%

Online aggregation

Execute query on growing random samples

Preliminary outputs are constantly updated – which?

Query result

Estimated error

Hard to execute efficiently – why?

Random sample \rightarrow Random access

Random samples might contain few rows that join

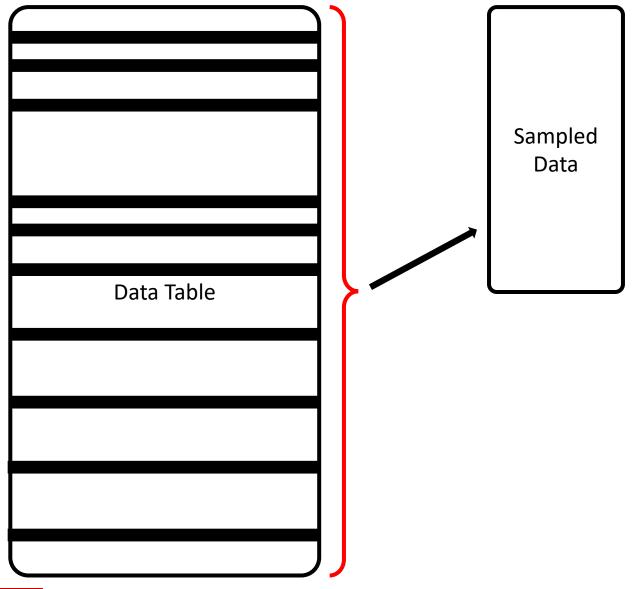
Can be improved using join indices

Queries on Pre-Computed Samples

Low latency because *sampling cost* is assumed *offline* operate *only on the sample*

Additional space (to keep sample)

Cannot provide fixed error bounds Error bounds are data dependent (high variance = large error) They can be arbitrarily large



SQL additions

Aggregate is computed on a group Group is defined based on certain columns Extend specification with bounds

Error-bound query

```
SELECT count(*)
FROM Sessions
WHERE Genre=`western`
GROUP BY OS
ERROR WITHIN 10% AT CONFIDENCE 95%
```

Time-bound query

SELECT count(*) FROM Sessions WHERE Genre=`western` GROUP BY OS WITHIN 5 SECONDS

Offline vs online sampling

	Offline	Online
Assumption:	(partially) known workload	No assumption
Speedup:	High	Low

Offline vs online sampling

	Offline	Online
Assumption:	(partially) known workload	No assumption
Speedup:	High	Low

Offline vs online sampling

	Offline	Online
Assumption:	(partially) known workload	No assumption
Speedup:	High	Low

Both are helpful:

- offline sampling is used for (partially) predictable workloads,
- online sampling is for the rest.

DBEst: transparent AQP

Very small query <u>execution</u> times (e.g., ms), With small state (memory/storage footprint) (e.g., KBs), and High accuracy (e.g., a few % relative error) *Regardless of data size*?

YES! (for a large class of analytical queries) rests on simple SML models Built over samples of tables

DBEst Contributions

DBEst shows that

Models can be built over small samples

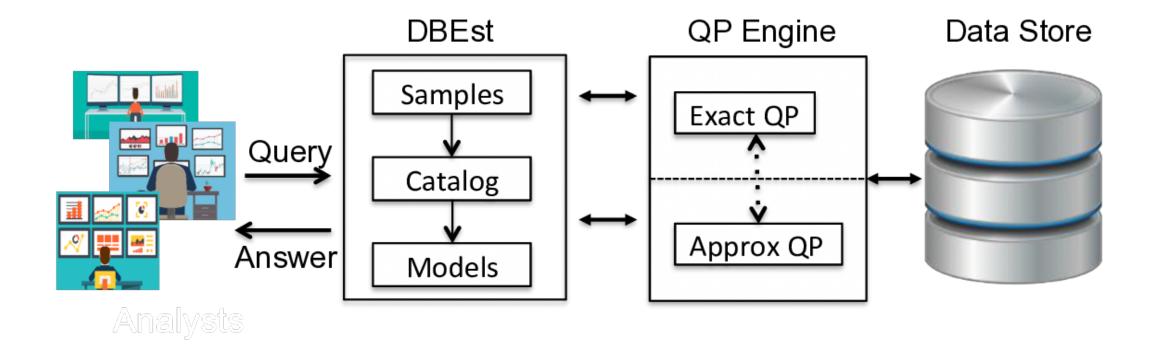
Can generalize nicely, ensuring accuracy

Model state is small (KBs)

AQP over models is much faster than over samples

Model training overhead is acceptable – inline with sample generation.

DBEst Architecture



DBEst and ML models

which **aggregate functions** are very **hard to answer** via **approximate** query processing?

Problem SQL query

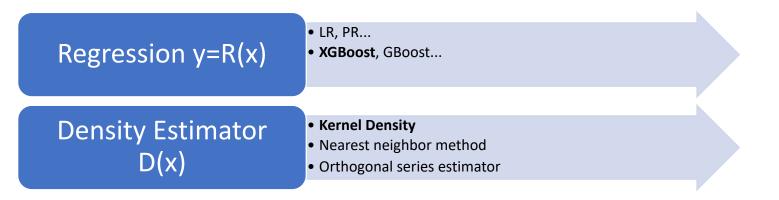
which are easy?

SELECT AF(**y**) from table

WHERE **x** between *low* and *high*

[GROUP BY z]

• What models?



Density Estimator

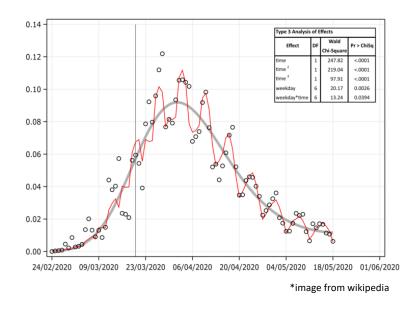


Histograms is the simplest form of **density estimator**

DBEst is **gradually learning** a function that **approximates** the **actual density** function of the data

e.g., "how many values exist between low and hi?"

Regression Model



A regression model describes the relationship between two variables y = F(x)

DBEst uses a regression model to capture "matches" from selection

e.g., "which values of y exist for x between low and hi?"

How to use regression and density estimation to answer queries?

SELECT count(*) FROM Table WHERE x between 1b and ub $COUNT(y) \approx N \cdot \int_{lb}^{ub} D(x)dx \quad \text{fraction of values in [lb,ub]}$ $AVG(y) = \mathbb{E}[y] \\ \approx \mathbb{E}[R(x)] \quad \text{relationship of x values with y values} \\ \int_{lb}^{ub} D(x)R(x)dx \quad \int_{lb}^{ub} D(x)dx \quad \text{fraction of values in [lb,ub]}$

SELECT avg(y) FROM Table WHERE x between 1b and ub

> $SUM(y) = COUNT(y) \cdot AVG(y)$ $\approx COUNT(y) \cdot \mathbb{E} [R(x)]$ $= N \cdot \int_{lb}^{ub} D(x)dx \cdot \frac{\int_{lb}^{ub} D(x)R(x)dx}{\int_{lb}^{ub} D(x)dx}$ $= N \cdot \int_{lb}^{ub} D(x)R(x)dx$

SELECT sum(y) FROM Table WHERE x between 1b and ub

How to use regression and density estimation to answer queries?

SELECT variance(y) FROM Table WHERE x between 1b and ub

$$VARIANCE_y(y) = \mathbb{E} [y^2] - [\mathbb{E} [y]]^2$$

$$\approx \mathbb{E} [R^2(x)] - [\mathbb{E} [R(x)]]^2$$

$$= \frac{\int_{lb}^{ub} R^2(x)D(x)dx}{\int_{lb}^{ub} D(x)dx} - \left[\frac{\int_{lb}^{ub} R(x)D(x)dx}{\int_{lb}^{ub} D(x)dx}\right]^2$$

PERCENTILE.

If the reverse of the CDF, $F^{-1}(p)$, could be obtained, then the p^{th} percentile for Column x is

SELECT percentile(x,p)
FROM Table

$$\alpha = F^{-1}(p) \tag{5}$$

Note that
$$F^{-1}(p)$$
 is derived using $F(p) = \int_{-inf}^{p} D(x) dx$

More support on SQL

SELECT avg(y) FROM Table WHERE x1 between 1b1 and ub1 AND x2 between 1b2 and ub2

$$AVG(y) = \mathbb{E}[y]$$

$$\approx \mathbb{E}[R(x_1, x_2)]$$

$$= \frac{\int_{lb_1}^{ub_1} \int_{lb_2}^{ub_2} D(x_1, x_2) R(x_1, x_2) dx_2 dx_1}{\int_{lb_1}^{ub_1} \int_{lb_2}^{ub_2} D(x_1, x_2) dx_2 dx_1}$$

Supporting GROUP BY

- build models for each group by value,
- create model bundles:
 - E.g., each bundle stores ~500 groups
 - Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).

Supporting join

• Join table is flattened -> make samples -> build models.

Evaluation

systematically showing sensitivities on

• range predicate selectivity + sample sizes + AFs

Performance under Group By and Joins

Comparisons against

- State of the art AQP (VerdictDB and BlinkDB)
- State of the art columnar DB (MonetDB)

Using data from TPC-DS and 3 different UCI-ML repo datasets.

Experimental Setup

Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5 Query types:

- Synthetic queries: 0.1%, 1%, to 10% query range
- Number of queries: vary between 30 to1000 queries.
- Complex TPC-DS queries: Query 5, 7, and 77.

Compared against VerdictDB, BlinkDB and MonetDB, for error

• VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst is also evaluated)

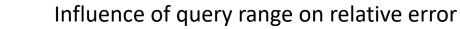
Report execution times + system throughput for the parallel version

Report performance of joins and group by

Performance – Sensitivity Analysis Query range effect

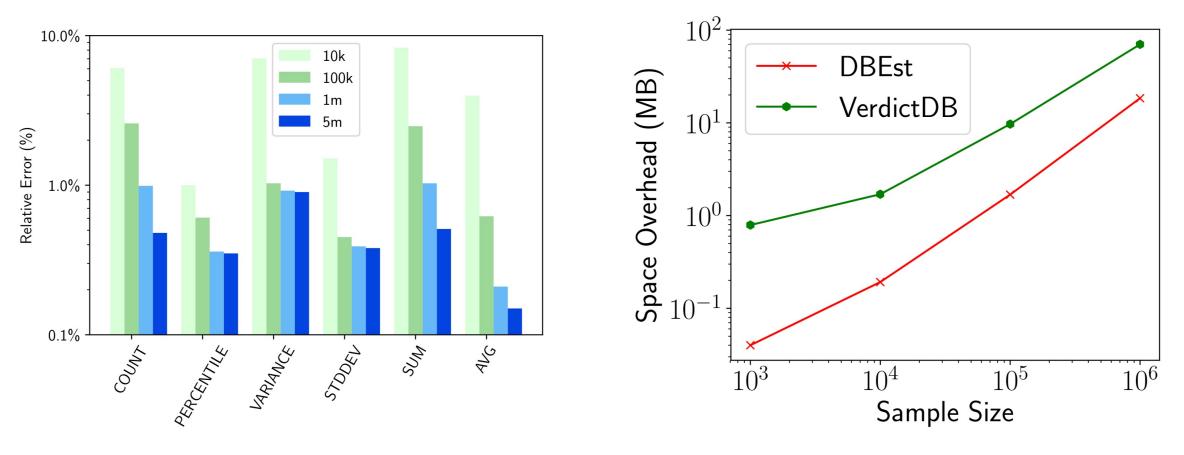
10.0% 0.1% query range 1.0% query range 10.0% query range Relative Error (%) 1.0% 0.1% SUM AVG

Dataset: TPC-DS Sample size: 100k 540 synthetic queries Column pair: [ss_list_price, ss_wholesale_cost]



Performance – Sensitivity Analysis Sample size effect

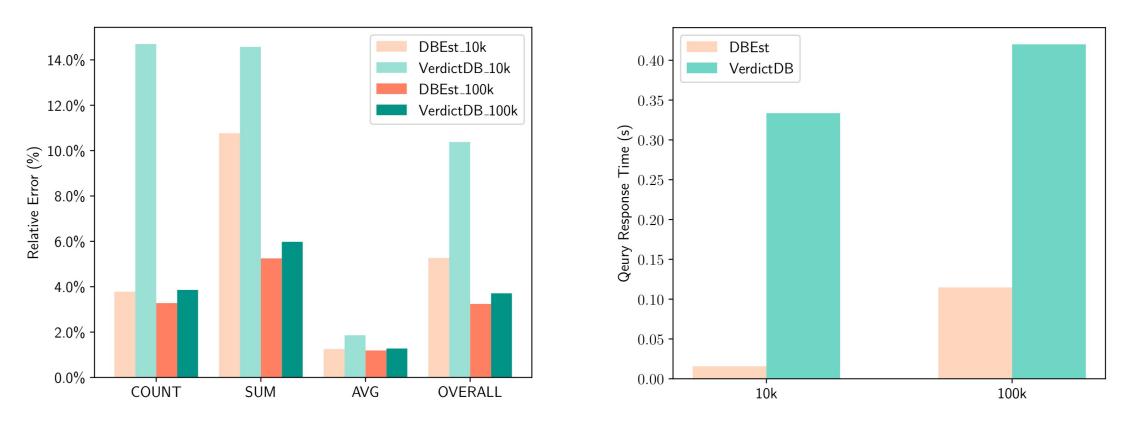
Dataset: TPC-DS Query range: 1% 1200 synthetic queries Column pair: [ss list price, ss wholesale cost]



Influence of sample size on space overhead

Performance Comparison TPC-DS dataset

Query range: 0.1%, 1%, 10% ~100 queries, involving 16 column pairs. Sample size: 10k, 100k



Relative Error: DBEst vs VerdictDB

Query Response Time: DBEst vs VerdictDB

Performance Comparison CCPP dataset

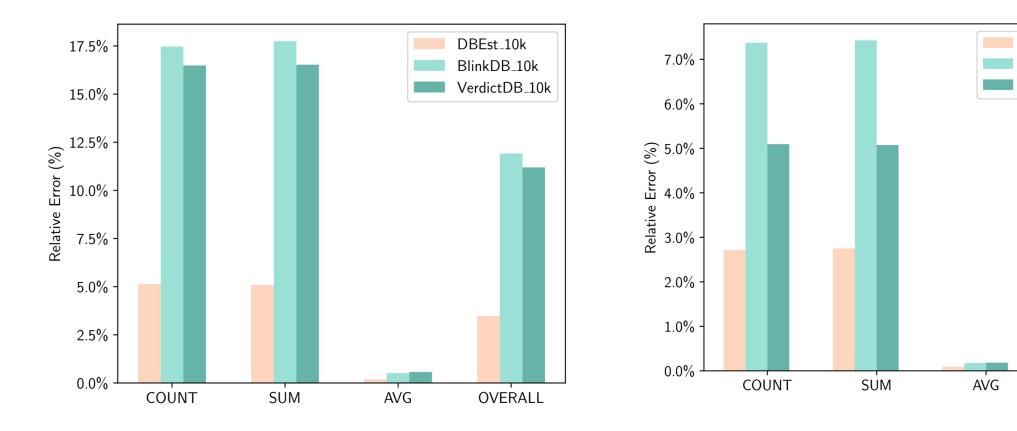
2.6 billion records, 1.4TB Query range: 0.1%, 0.5%, 1.0% 108 queries, involving 3 column pairs. Sample size: 10k, 100k

DBEst_100k

BlinkDB_100k

VerdictDB_100k

OVERALL



Relative error (10k sample)

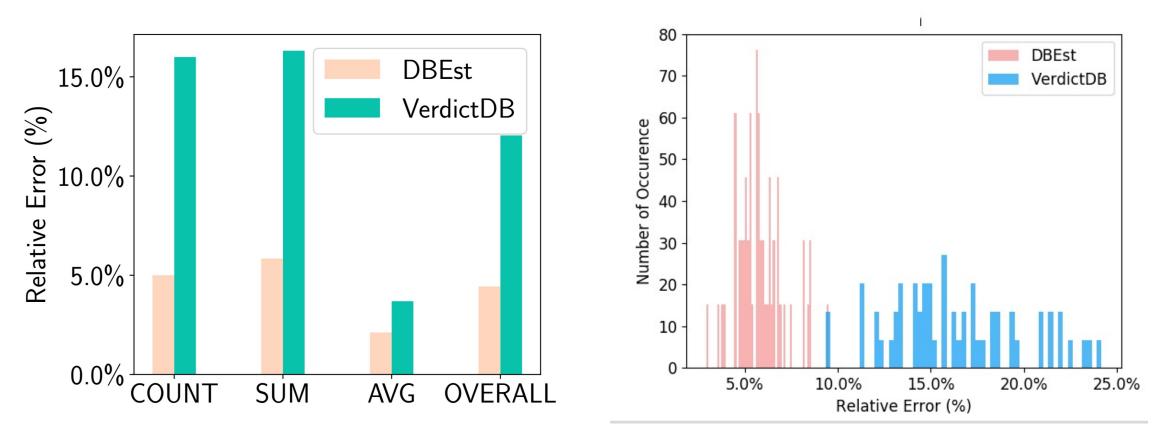
Relative error (100k sample)

Performance Comparison Group By

SELECT AF(ss_list_price) FROM store_sales WHERE ss_wholesale_cost_sk ... GROUP BY ss_store_sk

• 90 queries, 57 groups

• Sample size: 10k



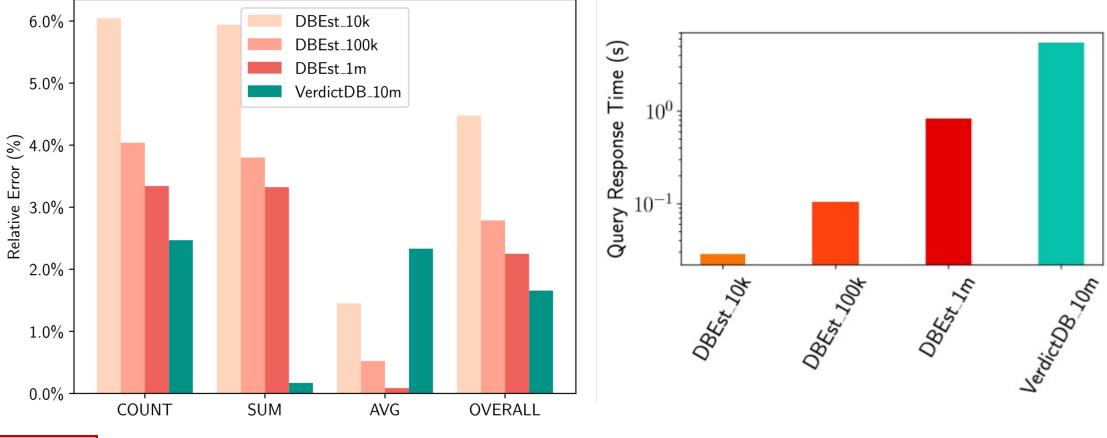
Relative error for group by queries

Accuracy histogram for SUM

Performance Comparison Join

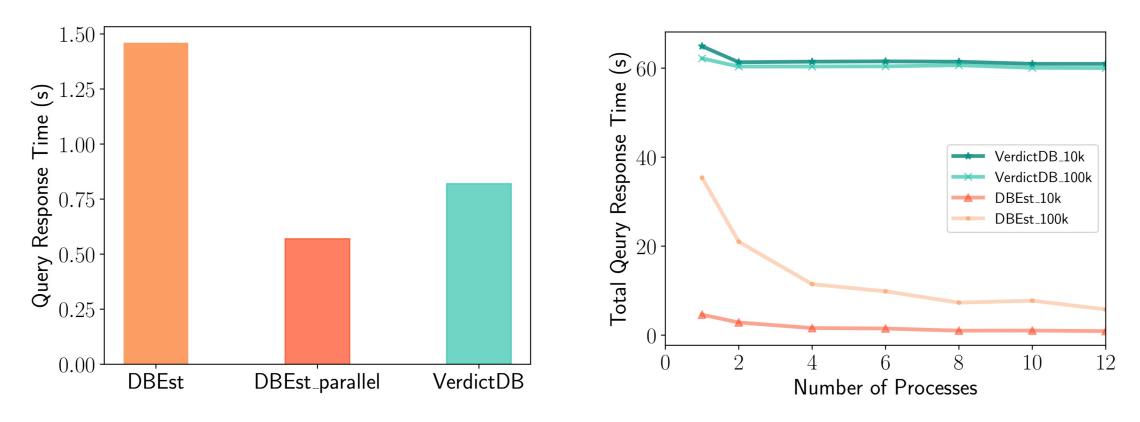
SELECT AF(ss_wholesale_cost), AF(ss_net_profit) FROM store_sales, store WHERE ss_store_sk=s_store_sk AND s_number_of_employees BETWEEN ...

• 42 queries.



Join accuracy comparison for the TPC-DS dataset

Query response time (s) for the TPC-DS dataset



Group by query response time reduction (TPC-DS)

Throughput of parallel execution (CCPP)

Limitations

- Group By Support ->too many groups
 - Model Training time \uparrow , Query Response time \uparrow , space overhead \uparrow .
- No error guarantee

Contribution & Conclusion

- Presented DBEst: a model-based AQP engine, using simple SML models:
 - Much smaller query response times
 - High(er) accuracy
 - Much smaller space-time overheads
 - Scalability
- Ensuring high accuracy, efficiency, scalability with low money investments -- resource (cpu, memory/storage/ network) usage.
- Future work: more efficient support for
 - Joins
 - Categorical attributes
 - Improved parallel/distributed DBEst

class 24

Learned (Approximate) Query Processing

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

with slides from Marco Serafini and Peter Triantafillou