BOSTON . i
CS 561: Data Systems Architectures

class 24

Learned (Approximate) Query Processing

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

with slides from Marco Serafini and Peter Triantafillou

https://bu-disc.github.io/CS561/

Project Submission & Presentations

April 27t 11:59pm: submit preliminary project report & code

April 28" and May 3™: 5 + 5 15-minute presentations (12+3 for questions)
(select your slot in piazza)

May 6% 11:59pm (hard deadline): send final report & updated code

BOSTON
UNIVERSITY

Guest lecture on “Building a Healthcare Computational Engine:
The case for purpose-built systems”

BOSTON Angelo Kastroulis, Ballista Technology Group
UNIVERSITY

modules

BOSTON
UNIVERSITY

AV VAR VAR VR VR VR V4

-

_

application/SQL
access patterns
complex queries

N [
Query Query

Parser Compiler
J AN

~

-

Optimizer

~

J

-

Evaluation

N\

Engine Management
J

Memory/Storage

~

J

-

_

N
Transaction

Indexin
& Management

N\

~

J

application/SQL
access patterns

V VvV VvV V V VV \V/ complexqueries

4 N N D
modules Query Query Ootimiz
. er
Parser | | Compiler P N
- J L PAN y
r N D
Evaluation Memory/Storage (o] Tuner £
Engine Management O
N J y

Use ML models to estimate the actual h

data and replace the Query Evaluation

Transaction
Nlanagement

SN .
UNIVERSITY

Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

100000 e, R R R R R R RE R
: Hive on Hadoop IR
Hive on Spark (without caching) S
()] Hive on Spark (with caching) =
E 10000
|_
GJ —
n un
cC o 1000
O C
O O
$ ©)
QO 100
o n
N
>
|-
)
S 10
O
1

2.5TB 7.5TB

Data Size (TB)

Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." Proceedings
of the 8th ACM European Conference on Computer Systems. ACM, 2013.

Motivation

In the era of big data, exact analytical query processing is too
“expensive”.

A large class of analytical queries takes the form:
SELECT AF(y) FROM table
WHERE x BETWEEN Ib AND ub
[GROUP BY z]

Such queries are very popular on emerging datasets/workloads: 10T,
sensors, scientific, etc.

BOSTON
UNIVERSITY

Approximate Query Processing
Targeting Analytical Queries — why?

Goal: fast data analytics over large volumes of data
Tradeoff: accuracy vs. latency — why?

Is an accurate response always necessary?
exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling

BOSTON
UNIVERSITY

Current Solutions

* Online Aggregations
* Data Sketches
* Sample-based Approaches (the dominating approach)

BOSTON
UNIVERSITY

Uniform Sampling

Stratified Sampling

Hash Sampling

mmel Limited supported aggregate functions

e Still, very time-consuming

ml Space Overhead — samples can be very large

e Support for join (multi-way)

e SUpport for nesting

Query-time sampling

Queries explicitly specify sample operations
Sample then execute query

Uniform sampling: may miss small groups
Distinct sampler: online sampling of distinct values

With joins: want to sample before joins not after — why?

BOSTON
UNIVERSITY

Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated — which?
Query result

Estimated error

BOSTON
UNIVERSITY

\.

Data Table

BOSTON
UNIVERSITY

expected mean: 1003
[990, 1020] with confidence 95%

\.

Data Table

\

BOSTON
UNIVERSITY

expected mean: 1002
[995, 1007] with confidence 96%

\ expected mean: 1001

Data Table [1001, 1001] with confidence 100%

BOSTON
UNIVERSITY

Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated — which?
Query result
Estimated error
Hard to execute efficiently — why?
Random sample = Random access
Random samples might contain few rows that join

Can be improved using join indices

BOSTON
UNIVERSITY

Queries on Pre-Computed Samples

Low latency because sampling cost is assumed offline
operate only on the sample

Additional space (to keep sample)

Cannot provide fixed error bounds
Error bounds are data dependent (high variance = large error)

They can be arbitrarily large

BOSTON
UNIVERSITY

Data Table

BOSTON
UNIVERSITY

Sampled
Data

SQL additions

Aggregate is computed on a group
Group is defined based on certain columns
Extend specification with bounds

Error-bound query Time-bound query

SELECT count (*) SELECT count (*)

FROM Sessions FROM Sessions

WHERE Genre= western WHERE Genre= western
GROUP BY OS GROUP BY OS

ERROR WITHIN 10% AT CONFIDENCE 95% WITHIN 5 SECONDS

BOSTON
UNIVERSITY

Oftline vs online sampling

Offline Online
Assumption: (partially) known workload No assumption
Speedup: Hig'h - Low

BOSTON
UNIVERSITY

Oftline vs online sampling

Assumption: (partially) known workload No assumption

e

[Speedup: High Low J

e T e e

BOSTON
UNIVERSITY

Oftline vs online sampling

Assumption: (partially) known workload No assumption

Speedup: High Low

Both are helpful:
» offline sampling is used for (partially) predictable workloads,
* online sampling is for the rest.

BOSTON
UNIVERSITY

DBEst: transparent AQP

Very small query execution times (e.g., ms),

With small state (memory/storage footprint) (e.g., KBs), and
High accuracy (e.g., a few % relative error)

Regardless of data size?

YES! (for a large class of analytical queries)
rests on simple SML models
Built over samples of tables

BOSTON
UNIVERSITY

DBEst Contributions

DBEst shows that
Models can be built over small samples
Can generalize nicely, ensuring accuracy
Model state is small (KBs)
AQP over models is much faster than over samples
Model training overhead is acceptable — inline with sample generation.

BOSTON
UNIVERSITY

DBEst Architecture

DBEst QP Engine Data Store
Samples —
Exact QP
v A
Catalog :
¢ el \'l
Models 2 U0 S

BOSTON
UNIVERSITY

DBEst and ML models

which aggregate functions are very hard to
. Pro b | em SQL query answer via approximate query processing?
SELECT AF(y) from table
WHERE x between low and high
[GROUP BY z]

 What models?

which are easy?

e LR, PR...
Regression y= R(X) « XGBoost, GBoost...

Density Estimator : Kernel Density

Nearest neighbor method
D(X) e Orthogonal series estimator

BOSTON
UNIVERSITY

Density Estimator

0.25

- Histograms is the simplest form of density estimator

. DBEst is gradually learning a function

that approximates the actual density function of the data
0.10
e.g., “how many values exist between low and hi?”
0.05
0.00
-3 -6 -4 -2 0 2 - 6 8

*image from wikipedia

BOSTON
UNIVERSITY

Regression Model

0.14 1

A regression model describes the relationship between two variables
y =F(x)

0.12 1

0.104

DBEst uses a regression model to capture “matches” from selection

0.06 1

. e.g., “which values of y exist for x between low and hi?”

0.02 1

0.00 { g0 ®®
T T T T T T T T
24/02/2020 09/03/2020 23/03/2020 06/04/2020 20/04/2020 04/05/2020 18/05/2020 01/06/2020

*image from wikipedia

How to use regression and density estimation to answer queries?

SELECT count (*)
FROM Table COUNT(y) ~ N

WHERE x between 1lb and ub

fraction of values in [lb,ub]

AVG(y) = Ely]

SELECT avg(y) ~ E[R()] relationship of x values with y values
FROM Table

WHERE x between 1lb and ub

fraction of values in [lb,ub]

SUM(y) = COUNT(y) - AVG(y)
~ COUNT(y) - E[R(x)]

SELECT sum(y) b e
FROM Table -~ [O e S DIRG)
WHERE x between lb and ub Ib IZbD(x)dx

ub
=N - /1 . D(x)R(x)dx

BOSTON
UNIVERSITY

How to use regression and density estimation to answer queries?

VARIANCE_y(y) = E [4?] - [E[y]]?

SELECT wvariance (y) Q,E[Rz(x)] — [E [R(x)]]?

FROM Table b b 2

WHERE x between 1lb and ub _ flb R*(x)D(x)dx ~ flb R(x)D(x)dx‘
" D(x)dx “? D(x)dx

PERCENTILE.

If the reverse of the CDF, F~(p), could be obtained, then the
p'" percentile for Column x is

SELECT percentile (x,p) =
a=F(p) (5)

FROM Table

Note that F~1(p) is derived using F(p) = _pl.nf D(x)dx

BOSTON
UNIVERSITY

More support on SQL

SELECT avg (y) AVG(y) = Ely]

FROM Table ~ E [R(x1, x2)]
WHERE x1 between 1bl and ubl ub, rub2
AND x2 between 1b2 and ub2 flbl o D(x1, x2)R(x1, x2)dxodx;

uby rub
flbl | Ib, * D(x1, x)dx2dx

Supporting GROUP BY

* build models for each group by value,
e create model bundles:

* E.g., each bundle stores ~500 groups
» Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).

Supporting join
 Join table is flattened -> make samples -> build models.

BOSTON
UNIVERSITY

Evaluation

systematically showing sensitivities on
* range predicate selectivity + sample sizes + AFs

Performance under Group By and Joins

Comparisons against

 State of the art AQP (VerdictDB and BlinkDB)
 State of the art columnar DB (MonetDB)

Using data from TPC-DS and 3 different UCI-ML repo datasets.

BOSTON
UNIVERSITY

Experimental Setup

Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD
Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5

Query types:
* Synthetic queries: 0.1%, 1%, to 10% query range
 Number of queries: vary between 30 to1000 queries.
e Complex TPC-DS queries: Query 5, 7, and 77.

Compared against VerdictDB, BlinkDB and MonetDB, for error

e VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst
is also evaluated)

Report execution times + system throughput for the parallel version
Report performance of joins and group by

BOSTON
UNIVERSITY

Dataset: TPC-DS

Performance — Sensitivity Analysis
Query range effect e

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% 1
] 0.1% query range
] I 1.0% query range
] BN 10.0% query range
&]
S
0 1.0% 1
2 :
=]
q) -4
0.1%

BOSTON .
UNIVERSITY Influence of query range on relative error

Performance — Sensitivity Analysis

Query range: 1%

S a m p ‘ e S I Ze effe Ct 1200 syn’Fhetic queries

Column pair:
[ss_list_price, ss_wholesale_cost]

10.0% 1].02
] 10k]
100k 8 1 | — DBESt
Im] z
- S—
R e = 104 VerdictDB
< 5= E
o 0 !
W 1.0% =]
=] qL) 0
® - > 104
& I O E
1 O]
O
] g]
0.1% N
& 44,]
% Q’ b Q/ Lans b Tt T rer g T — v T Ty T T+ T T Ty
S g s S
& & & £ 10° 10* 10° 10°
& Sample Size

Influence of sample size on relative error Influence of sample size on space overhead
BOSTON

UNIVERSITY

Performance Comparison

~100 queries, involving 16

TPC-DS dataset

Sample size: 10k, 100k

, DBEst_10k DBEst
14.0% A VerdictDB_10k 0.40 7 VerdictDB
DBEst_100k 0.35 1
12.0% - BN VerdictDB_100k '
= 0.30 -
S 10.0%- £
: - 0.25
& 8.0% - £
2 @ 0.20 -
£ 60%- e
2 0.15 A
o
4.0% 1
0.10 1
20% 7 005 -
00% T T T . T 000 ' !
COUNT SUM AVG OVERALL 10k 100k

Relative Error: DBEst vs VerdictDB Query Response Time: DBEst vs VerdictDB

Pe rfO r m a n Ce CO m p a ri SO n 2.6 billion records, 1.4TB

Query range: 0.1%, 0.5%, 1.0%

CC P P d a ta S e-t Ii(a)iSrst:.|ueries, involving 3 column

Sample size: 10k, 100k

17.5% - DBEst_10k DBEst_100k
BlinkDB_10k 7.0% 1 BlinkDB_100k
{50 WS VerdictDB_10k B VerdictDB_100k
‘ 6.0% -
o/ —_
< 12.5% S 50%
£100% 1 5 4.0% -
Q 2
g 7.5% - § 3.0%
e
5.0% - 2.0%
2.5% - 1.0% 1
0.0% m— |
0.0% - - — : COUNT SUM AVG OVERALL
COUNT SUM AVG OVERALL

Relative error (10k sample) Relative error (100k sample)

SELECT AF(ss_list_price)

Performance Comparison

GROUP BY ss_store_sk

Group By 5o 57 v

* Sample size: 10k

80
DBEst
15.0% 1 DBEst 70 1 mam VerdictDB
— B VerdictDB 60
o> 3
el £ 50 1
2 10.0%- 8
L S 40-
w &
2 2 30-
© g
é) 50% i Z 20 -
10 |
0.0% COUNT SUM AVG OVERALL ° 5.0% 10.0% 15.0% 20.0% 25.0%
Relative Error (%)
Relative error for group by queries Accuracy histogram for SUM

BOSTON
UNIVERSITY

SELECT AF(ss_wholesale_cost), AF(ss_net_profit)
FROM store_sales, store

Performance Comparison Join ity S

* 42 queries.

6.0% - DBEst_10k
DBEst_100k o
. BN DBEst 1m 0
5.0% BN VerdictDB_10m E
= 1004
()]
—~ m 4
© 4.0% A 5
Py o
: g
L e
v 3.0% - > 1071
o (@ 5
2.0% - & & &
b S o
) / “
1.0% 5 & & o
NS) Q &
Q S
% ¥
0.0% -

COUNT SUM AVG OVERALL

ISIONMNOINE |0in accuracy comparison for the TPC-DS dataset Query response time (s) for the TPC-DS dataset
UNIVERSITY

Parallel Query Execution

1.50 1

R
DO
a

e
o
S

=
o
S

Query Response Time (s)
o
~
ot

o
N
Ot

0.00 ' ' -
DBEst DBEst _parallel VerdictDB

Group by query response time reduction (TPC-DS)

BOSTON
UNIVERSITY

Total Qeury Response Time (s)

[}

60

S
()

N\
-

1 core versus 12 cores

Number of Processes

=fe== \/erdictDB_10k
VerdictDB_100k
DBEst_10k
DBEst_100k
0 4 6 8 10

Throughput of parallel execution (CCPP)

12

Limitations

* Group By Support ->too many groups
* Model Training time %, Query Response time 1\, space overhead 1.

* No error guarantee

BOSTON
UNIVERSITY

Contribution & Conclusion

* Presented DBEst: a model-based AQP engine, using simple SML models:
* Much smaller query response times
* High(er) accuracy
* Much smaller space-time overheads
* Scalability

* Ensuring high accuracy, efficiency, scalability with low money investments -
- resource (cpu, memory/storage/ network) usage.

e Future work: more efficient support for
* Joins
e Categorical attributes
* Improved parallel/distributed DBEst

BOSTON
UNIVERSITY

BOSTON . i
CS 561: Data Systems Architectures

class 24

Learned (Approximate) Query Processing

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

with slides from Marco Serafini and Peter Triantafillou

https://bu-disc.github.io/CS561/

