BOSTON . i
CS 561: Data Systems Architectures

class 22

Machine Learning & Data Systems

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Project Submission & Presentations

April 27t 11:59pm: submit preliminary project report & code

April 28" and May 3™: 5 + 5 15-minute presentations (12+3 for questions)
(select your slot in piazza)

May 6% 11:59pm (hard deadline): send final report & updated code

BOSTON
UNIVERSITY

Guest lecture on “Building a Healthcare Computational Engine:
The case for purpose-built systems”

BOSTON Angelo Kastroulis, Ballista Technology Group
UNIVERSITY

Machine learning algorithms improve automatically
through experience and by the use of data.

Machine learning algorithms build a model based on
training data, in order to make predictions or decisions
without being explicitly programmed to do so.

Which database systems components can |
benefit/be replaced by ML algorithms? 711

-

BOSTON
UNIVERSITY

modules

BOSTON
UNIVERSITY

AV VAR VAR VR VR VR V4

-

_

application/SQL
access patterns
complex queries

N [
Query Query

Parser Compiler
J AN

~

-

Optimizer

~

J

-

Evaluation

N\

Engine Management
J

Memory/Storage

~

J

-

_

N
Transaction

Indexin
& Management

N\

~

J

modules

BOSTON
UNIVERSITY

AV VAR VAR VR VR VR V4

application/SQL
access patterns
complex queries

4 N [N ™
Query Query .
. Optimizer
Parser | | Compiler P N
- J J Y,
4 N ™
Evaluation Memory/Storage (- Tuner &3
Engine Management &
J Y,
g N (Tran Yse ML models to replace the cost-
Indexing Man: models of the database Tuner
- J — J

application/SQL
access patterns

V VvV VvV V V VV \V/ complexqueries

4 N N ~
modules Query Query Ootimizer
Parser Compiler P N
g J AN)
(N\ p
Use ML models to replace the Memory/Storage - Tunera?
navigational part of an Index Management)
(" N ~N
. Transaction
Indexing
Management

BOSTON \. J L y
UNIVERSITY

application/SQL
access patterns

V VvV VvV V V VV \V/ complexqueries

4 N N A
modules Query Query Optimizer
Parser | | Compiler N
_ J VAN y, \
(E uat N (\ Use ML models to replace the cost-
va uz.atlon €M model of the Query Optimizer
Engine Mariageciiicii \ -y
J Y,
~ N A
: Transaction
Indexing
Management
- J L y,

BOSTON
UNIVERSITY

application/SQL
access patterns

V VvV VvV V V VV \V/ complexqueries

4 N N D
modules Query Query Ootimiz
. er
Parser | | Compiler P N
- J L PAN y
r N D
Evaluation Memory/Storage (o] Tuner £
Engine Management O
N J y

Use ML models to estimate the actual h

data and replace the Query Evaluation

Transaction
Nlanagement

SN .
UNIVERSITY

modules

BOSTON
UNIVERSITY

AV VAR VAR VR VR VR V4

application/SQL
access patterns
complex queries

4 N [N ™
Query Query .
. Optimizer
Parser | | Compiler P N
- J J Y,
4 N ™
Evaluation Memory/Storage (- Tuner &3
Engine Management &
J Y,
g N (Tran Yse ML models to replace the cost-
Indexing Man: models of the database Tuner
- J — J

Selt-driving Data systems

Types of actions that
a self-driving system
needs to take

automatically

BOSTON
UNIVERSITY

Types

Actions

Indexes
Materialized Views

AddIndex, DropIndex, Rebuild, Convert
AddMatView, DropMatView

Query Optimizations

—

-

&)

7

-

& Storage Layout Row—Columnar, Columnar—Row, Compress
= Location MoveUpTier, MoveDownTier, Migrate

< . gty :

A Partitioning RepartitionTable, ReplicateTable

= Resources AddNode, RemoveNode

E Configuration Tuning IncrementKnob, DecrementKnob, SetKnob
-

&~

CostModelTune, Compilation, Prefetch

Use-case: Peloton Self-Driving Architecture

(E) Action Planning

(C) Workload Classification [use tools like receding-horizon control
o o [unsupervised learning to model to select actions that might lead
(A) Application (B) Workload Monitoring o5 similar queries] to better performance in the future]
n 1 i | Workload Classification Action Planning Module
: 5 - : : Generator
: : : : RHCM Search
ZZa Workload | ! Clusteri - [Physical
Application i O Monitor | : A;;f,m',,ng - & e Cpb
Event . 5 Data Opts
Stream Workioad Clusters -
Execution Opts (Cost Estimator)
Workload Forecasting
Execution Threads

=
In-Memory
Database

GCNaE £ Aol L=

3
§ § : : Deployment History
—_ H ; Recurrent Neurs! Network H : s Bt aten
Runtime Architecture Workload Modeling Control Framework
(D) Workload Forecasting (F) Action Generator

[predict future workload to [select action and log them,

autoscale cloud instances]
BOSTON reversals may also happen]
UNIVERSITY

Workload forecasting

Using Recurrent £ 2100 A
Neural NEtWOrkS (RNN) 51400. : Tl v e e, " < S ISR
‘E 2000 — Prodicted Worldoat || ... 0 e b gL S cosisousdoogisin riagiisss
the model learns patterns 3 — Actual Workioad | | , ,
and adapts to changes # 00:00 0300 0600 09:00 12:00 1500 18:00 21:00 00:00
(a) RNN Forecast Model (24-Hour Horizon)
5 120
£
x 80
0
£ 40}
é 0 : : : : : :
Jan-25 Jan-26 Jan-27 Jan-28 Jan-29 Jan-30 Jan-31 Feb-01

(b) RNN Forecast Model (7-Day Horizon)

BOSTON
UNIVERSITY

Action example: adapting the storage layout

1800{©~© RowLayout ©-3 ColumnLayout V-V Hybrid Layout
0-0°0 eXeXe)

Coo
0-0-0

1350 fro-ey ... 09 _ _
v oa
ifals! poal Uom PON 939 9vv
900l YV v vy YV

450+

Workload Latency (sec)

A", A 99 A A" e
0NWMWMPWMWMPWMWMPWWWMPWMWMPWNWE
Jan-25 Jan-26 Jan-27 Jan-28 Jan-29 Jan-30 Jan-31

Columns are better for OLAP
Rows are better for OLTP

Hybrid matches the best when workload alternates

BOSTON
UNIVERSITY

Why automatic tuning is hard? (1/2)

BOSTON
UNIVERSITY

09”/ 600 1000 >0 0.0
e A B 2000 1500 | o (MB) 97500 1000 1500 2000 2500 3000
1 or poo! Buffer pool size (MB)
(a) Dependencnes (b) Continuous Settings
Complex interdependencies between Continuous domain (“too many” knob options)
different tuning knobs! with irregular benefits

Why automatic tuning is hard? (2/2)

g
(=]

600
B EEA Workload #1 = — MySOL
& | mER Workioad #2 g | P:ggr T g
:4.0 - B Workload #3 S400F T e e e e
= - S sz
o\o ~—
r~ 20P """l cccccccciiess s .8 00F =~~~ = = gl o e e e
5 - :
I T
Config#1 Config#2 Config #3 oo 2004 2008 2012 2016
Release date
Non-reusable configurations! Increasing tuning complexity

BOSTON
UNIVERSITY

Use case: Ottertune

r
I
|
I
1
I
I
I
I
1
I
I
I
I
I
I
r
I
I
I
I
|
I
1
I
|
I
I
I
I
I
I

Two distinct components: the tuning manager does not have access to data,
only to performance metrics and the values of the tuning knobs

All performance data are organized per system and per major version to ensure
that no wrong, deprecated, or non-existing knobs are tuned.

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

[Fstmct Metncs _._

Samples

Metrics

How to classify/characterize a workload? 7\‘\/,

A workload is characterized based on the system metrics when it is executed
(e.g., #pages reads/writes, cache utilization, locking overhead)

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

-
¥ Distinct Metrics _.ﬁ T
—1'—. |
ol '

Samples

Collect statistics at the global level (system-wide), per table proves to be challenging for various systems

Prune redundant metrics (e.g., data read and pages read are directly linked) via factor analysis and k-means clustering

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

T
¥ Distinct Metrics _.ﬁ
" — |

Samples

Metrics

|ldentify important knobs

Order the knobs based on their significance on the system’s performance (and identify knobs interdependencies)

Store in a repository observations

BOSTON
UNIVERSITY

OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

Automated Tuning: an Example

Use the systems metrics to identify (classify)
the workload

Iterative configuration recommendation balancing exploration vs. exploitation

Exploration: try out a configuration for which there is not enough data in the repository
this is done when (i) there is not enough data for this workload (so more data are needed), or
(ii) the system decides to try out new configurations that help collect more data in general

Exploitation: the systems uses small variations of a configuration that is close to optimal using the existing data

BOSTON
UNIVERSITY

OtterTune In Action

Start by sweeping values of knobs to collect “training data”

esmms 4 kNObs ®s=== 8 knobs esss= 16 knobs === Max knobs Incremental

280m 4400
oy H N - - - - - - - - - - - - ----- g

é 260P L ------- _‘-—1 --------- ~ 4350
o) Q
= £

o\b 240 S 4300
g =
]

© 220t L . - S 4250

Q ‘?,00 &QQ ,(.)QQ %QQ \000 Q ?’QQ D‘QQ 600 %QQ \QQQ
Tuning time (minutes) Tuning time (minutes) Tuning time (minutes)

(a) MySQL (TPC-C) (b) Postgres (TPC-C) (¢) Vector (TPC-H)

Increasing the number of knobs gradually is the best

The optimal number of knobs varies per DBMS and workload!
approach, because it balances complexity and performance.

OtterTune tunes MySQL and Postgres that have few impactful knobs, and Actian Vector
that requires more knobs to be tuned in order to achieve good performance.

BOSTON
UNIVERSITY

OtterTune vs ITunes on TPCC

iTuned uses an initial set of 10 DBMS configurations at the beginning of the tuning session.

e iTuned e QOtterTune
600

W H-c-fe-acaooocaoadiiaddd w
ésoo ------------------------ E
= .
DA e womF s s s o 52
ol | —————]

S 300} 5

O D P P P O P O D P P P 0 0
Tuning time (minutes) Tuning time (minutes)
(a) MySQL (b) Postgres

OtterTune is trained with more data, so it can achieve a better end result!

BOSTON
UNIVERSITY

OtterTune vs ITunes on TPCH

e Tuned === QOtterTune

E = '
é’ — 4600}
= = 4500
= ~
= = 44001 - -
2 ke
O D 0 P P 0 0 O D O P P P P
Tuning time (minutes) Tuning time (minutes)
(a) Vector (TPC-H #1) (b) Vector (TPC-H #2)

Actian Vector allows fewer “bad” options, so the training is easier.

BOSTON
UNIVERSITY

“A tuning knob is a database engineer not knowing what do”

take this with a grain of salt!

BOSTON
UNIVERSITY

OtterTune Efficacy Comparison

(77 Default [EEE OtterTune [EEE Tuning script [Soeg DBA KXY RDS-config

61000 ,-\1000
o 3

S 750 § 750

E'_ 500 g_ 500

=) < i

3 250 %’ 250

o, £l

(@) TPC-C (Throughput) (b) TPC-C (99%-tile Latency) (a) TPC-C (Throughput) (b) TPC-C (99%-tile Latency)
MySQL PostgreSQL

It is hard (but not impossible) to beat an expert DBA!

BOSTON
UNIVERSITY

Query Optlmlzatlon Data Access

A Learnea S L
Database System | orering - Indexes

Data Cubes

- Sorting -
- Joins Q - AQP |
- Aggregation - - Machine

- Scheduling hes Learnlng
Query Execution

Data Hardware Workload

BOSTON
UNIVERSITY

application/SQL
access patterns

V VvV VvV V V VV \V/ complexqueries

4 N N A
modules Query Query Optimizer
Parser | | Compiler N
_ J VAN y, \
(E uat N (\ Use ML models to replace the cost-
va uz.atlon €M model of the Query Optimizer
Engine Mariageciiicii \ -y
J Y,
~ N A
: Transaction
Indexing
Management
- J L y,

BOSTON
UNIVERSITY

Learned Query Optimization

BOSTON
UNIVERSITY

Sample ‘
Workload
User Query .

Neo
.----.-------------------------..
_i» B 3\ (N
' Expert b o

- Optimizer :g
; Executed Plans : B
; Y.

e Featurizer | = :m
|

5 @ N s ﬁ 15

r o B Prediction | © B 3

(] o g 3] 1 @
v 3 © @ (3,
- 8 =< |8 &
: - -
-l

'-
|
:
B
([0
:
I
[
1
|
I
:
[
L]
|
"
:
-
:
]
:
o
(4"]
= |
2

Selected plan ‘{\

Database Execution Engine

Learned Query Optimization

Initial Policy
Expert System
(e.g., PostgreSQL)

Learned Policy
@ Vis1 @ Search overv,,

Value Network
Trained from Experience

BOSTON
UNIVERSITY

PostgreSQL SQLite MS SQL Server Oracle

N
n

N

n
N
n
N
n

Postgres ——--) ' SsQLite ===~ Oracle ——--
oy Neo (R-Vectors) —— | S 2 PostgreSQL on SQLite —-—-- > > 5 PostgreSQL on Oracle —-=—--
E 2 - Neo (Row Vectors) - Sy s - Neo (Row Vectors) ——
§ 1'5 § 1'5 L 5 1'5 L POStgreSQL On SOL Srv oy A San § 1'5 L
m b T b Neo (Row Vectors) b
g e 2 a e —— 3 a
£ £ £ £
g 0.5 g 0.5 ‘23 0.5 g 0.5
0 20 40) 60 80 100 0 0 20 40 60 80 100 0 0 20 40 60 80 100 0 0 20 40 60 80 100
Iterations Iterations Iterations Iterations
25 25 25
o o > o
2t 2
§ § § §
m 3as} 3 3 3
. 3 3 3 3
O 8 5 = = =
]
E : : g
3 0.5 ‘23 ‘z> 0.5 § 0.5
06— 20 40 60 80 100 06— 20 40 60 80 100 06— 20 a0 60 80 100 06— 20 40 60 80 100
Iterations Iterations Iterations Iterations
Yy) by)
| =4 [= | =4 | =4
8 8] £
3 L | L L PR A (SRS . N
Q“ © © © ©
M ¥ & & & |
o 2 E 2 g 5 e s
S S 05 205
0020 40 60 80 100 0020 a0 60 80 100 0020 a0 60 @80 100 0020 a0 60 80 100
Iterations Iterations Iterations Iterations

BOSTON

UNIVERSITY

A perspective on
ML in Database Systems

from: ML-In-Databases: Assessment and Prognosis, IEEE Data Engineering Bulletin

New Forces

(1) End-user want to
democratize data (all business units to have access to all data)
make data-driven decisions (often in real time)

(2) New applications

structured query processing (SQL) + natural language processing
(NLP) + Complex Analytics (exploratory + predictive ML)

BOSTON
UNIVERSITY

New Forces

(3) Data integration

diverse and inconsistent datasets are combined in common data
repositories (data lakes)

(2) New hardware + the move to the cloud
moving from full ownership to pay-as-you-go
self-tuning systems en masse in the cloud (as we discussed today)

BOSTON
UNIVERSITY

Consequences and New Directions

Storage hierarchy is still relevant, but the layers are elastic (in the cloud)
ML models can be deployed at-will as “functions”

New push for serverless computing
use only services and not rent an entire server

BOSTON
UNIVERSITY

BOSTON . i
CS 561: Data Systems Architectures

class 22

Machine Learning & Data Systems

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Anonymous feedback (if we have time)

| would like to ask for direct feedback for this class!

While we will also ask you to fill in the university form towards the end
of the semester, your direct feedback is really valuable as it can be
immediately actionable!

BOSTON
UNIVERSITY

