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Project Submission & Presentations

April 27t 11:59pm: submit preliminary project report & code

April 28" and May 3™: 5 + 5 15-minute presentations (12+3 for questions)
(select your slot in piazza)

May 6% 11:59pm (hard deadline): send final report & updated code
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Guest lecture on “Building a Healthcare Computational Engine:
The case for purpose-built systems”

BOSTON Angelo Kastroulis, Ballista Technology Group
UNIVERSITY




Machine learning algorithms improve automatically
through experience and by the use of data.

Machine learning algorithms build a model based on
training data, in order to make predictions or decisions
without being explicitly programmed to do so.

Which database systems components can |
benefit/be replaced by ML algorithms? 711
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Selt-driving Data systems

Types of actions that
a self-driving system
needs to take

automatically
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Types

Actions

Indexes
Materialized Views

AddIndex, DropIndex, Rebuild, Convert
AddMatView, DropMatView

Query Optimizations

—
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& Storage Layout Row—Columnar, Columnar—Row, Compress
= Location MoveUpTier, MoveDownTier, Migrate
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A Partitioning RepartitionTable, ReplicateTable

= Resources AddNode, RemoveNode

E Configuration Tuning IncrementKnob, DecrementKnob, SetKnob
-
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CostModelTune, Compilation, Prefetch



Use-case: Peloton Self-Driving Architecture

(E) Action Planning

(C) Workload Classification [use tools like receding-horizon control
o o [unsupervised learning to model to select actions that might lead
(A) Application  (B) Workload Monitoring o5 similar queries] to better performance in the future]
n 1 i | Workload Classification Action Planning Module
: 5 - : : Generator
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Execution Threads
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Runtime Architecture Workload Modeling Control Framework
(D) Workload Forecasting (F) Action Generator

[predict future workload to [select action and log them,

autoscale cloud instances]
BOSTON reversals may also happen]
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Workload forecasting

Using Recurrent £ 2100 A
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(b) RNN Forecast Model (7-Day Horizon)
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Action example: adapting the storage layout
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Columns are better for OLAP
Rows are better for OLTP

Hybrid matches the best when workload alternates
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Why automatic tuning is hard? (1/2)

BOSTON
UNIVERSITY

09”/ 600 1000 >0 0.0
e A B 2000 1500 | o (MB) 97500 1000 1500 2000 2500 3000
1 or poo! Buffer pool size (MB)
(a) Dependencnes (b) Continuous Settings
Complex interdependencies between Continuous domain (“too many” knob options)
different tuning knobs! with irregular benefits



Why automatic tuning is hard? (2/2)

g
(=]

600
B EEA Workload #1 = — MySOL
& | mER Workioad #2 g | P:ggr T g
:4.0 - B Workload #3 S400F T e e e e
= - S sz
o\o ~—
r~ 20P """l cccccccciiess s .8 00F =~~~ = = gl o e e e
5 - :
I T
Config#1  Config#2  Config #3 oo 2004 2008 2012 2016
Release date
Non-reusable configurations! Increasing tuning complexity
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Use case: Ottertune
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Two distinct components: the tuning manager does not have access to data,
only to performance metrics and the values of the tuning knobs

All performance data are organized per system and per major version to ensure
that no wrong, deprecated, or non-existing knobs are tuned.
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OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

*[Fstmct Metncs _._*

Samples

Metrics

How to classify/characterize a workload? 7\‘\/,

A workload is characterized based on the system metrics when it is executed
(e.g., #pages reads/writes, cache utilization, locking overhead)
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OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

-
¥ Distinct Metrics _.ﬁ T
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Samples

Collect statistics at the global level (system-wide), per table proves to be challenging for various systems

Prune redundant metrics (e.g., data read and pages read are directly linked) via factor analysis and k-means clustering
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OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

T
¥ Distinct Metrics _.ﬁ
" — |

Samples

Metrics

|ldentify important knobs

Order the knobs based on their significance on the system’s performance (and identify knobs interdependencies)

Store in a repository observations
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OtterTune Machine Learning Pipeline

Workload Characterization Knob Identification Automatic Tuner

Automated Tuning: an Example

Use the systems metrics to identify (classify)
the workload

Iterative configuration recommendation balancing exploration vs. exploitation

Exploration: try out a configuration for which there is not enough data in the repository
this is done when (i) there is not enough data for this workload (so more data are needed), or
(ii) the system decides to try out new configurations that help collect more data in general

Exploitation: the systems uses small variations of a configuration that is close to optimal using the existing data
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OtterTune In Action

Start by sweeping values of knobs to collect “training data”
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Increasing the number of knobs gradually is the best

The optimal number of knobs varies per DBMS and workload!
approach, because it balances complexity and performance.

OtterTune tunes MySQL and Postgres that have few impactful knobs, and Actian Vector
that requires more knobs to be tuned in order to achieve good performance.
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OtterTune vs ITunes on TPCC

iTuned uses an initial set of 10 DBMS configurations at the beginning of the tuning session.
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OtterTune is trained with more data, so it can achieve a better end result!
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OtterTune vs ITunes on TPCH

e Tuned === QOtterTune
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Actian Vector allows fewer “bad” options, so the training is easier.
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“A tuning knob is a database engineer not knowing what do”

take this with a grain of salt!
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OtterTune Efficacy Comparison
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It is hard (but not impossible) to beat an expert DBA!
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Learned Query Optimization
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Learned Query Optimization

Initial Policy
Expert System
(e.g., PostgreSQL)

Learned Policy
@ Vis1 @ Search overv,,

Value Network
Trained from Experience
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PostgreSQL SQLite MS SQL Server Oracle
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A perspective on
ML in Database Systems

from: ML-In-Databases: Assessment and Prognosis, IEEE Data Engineering Bulletin



New Forces

(1) End-user want to
democratize data (all business units to have access to all data)
make data-driven decisions (often in real time)

(2) New applications

structured query processing (SQL) + natural language processing
(NLP) + Complex Analytics (exploratory + predictive ML)
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New Forces

(3) Data integration

diverse and inconsistent datasets are combined in common data
repositories (data lakes)

(2) New hardware + the move to the cloud
moving from full ownership to pay-as-you-go
self-tuning systems en masse in the cloud (as we discussed today)
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Consequences and New Directions

Storage hierarchy is still relevant, but the layers are elastic (in the cloud)
ML models can be deployed at-will as “functions”

New push for serverless computing
use only services and not rent an entire server
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Anonymous feedback (if we have time)

| would like to ask for direct feedback for this class!

While we will also ask you to fill in the university form towards the end
of the semester, your direct feedback is really valuable as it can be
immediately actionable!
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