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ABSTRACT

As data collections become larger and larger, data loading evolves
to a major bottleneck. Many applications already avoid using data-
base systems, e.g., scientific data analysis and social networks, due
to the complexity and the increased data-to-query time. For such
applications data collections keep growing fast, even on a daily ba-
sis, and we are already in the era of data deluge where we have
much more data than what we can move, store, let alone analyze.

Our contribution in this paper is the design and roadmap of a
new paradigm in database systems, called NoDB, which do not re-
quire data loading while still maintaining the whole feature set of
a modern database system. In particular, we show how to make
raw data files a first-class citizen, fully integrated with the query
engine. Through our design and lessons learned by implementing
the NoDB philosophy over a modern DBMS, we discuss the fun-
damental limitations as well as the strong opportunities that such a
research path brings. We identify performance bottlenecks specific
for in situ processing, namely the repeated parsing and tokenizing
overhead and the expensive data type conversion costs. To address
these probl we introduce an ad; indexing mechanism that
maintains positional information to provide efficient access to raw
data files, together with a flexible caching structure.

Our implementation over PostgreSQL, called PostgresRaw, is
able to avoid the loading cost completely, while matching the query
performance of plain PostgreSQL and even outperforming it in
many cases. We conclude that NoDB systems are feasible to de-
sign and implement over modern database architectures, bringing
an unprecedented positive effect in usability and performance.
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1. INTRODUCTION

We are now entering the era of data deluge, where the amount
of data outgrows the capabilities of query processing technology.
Many emerging applications, from social networks to scientific ex-
periments, are representative examples of this deluge, where the
rate at which data is produced exceeds any past experience. Scien-
tific analysis such as astronomy is soon expected to collect multi-
ple Terabytes of data on a daily basis, while web-based businesses
such as social networks or web log analysis are already confronted
with a growing stream of large data inputs. Therefore, there is a
clear need for efficient big data processing to enable the evolution
of businesses and sciences to the new era of data deluge.

. Although Database M: Systems (DBMS)
remain overall the predominant data analysis technology, they are
rarely used for emerging applications such as scientific analysis and
social networks. This is largely due to the complexity involved;
there is a significant initialization cost in loading data and preparing
the database system for queries. For example, a scientist needs to
quickly examine a few Terabytes of new data in search of certain
properties. Even though only few attributes might be relevant for
the task, the entire data must first be loaded inside the database.
For large amounts of data, this means a few hours of delay, even
wuh pamllel loading across multiple machines. Besides being a

g time i itis also imp to ider the extra
puting d for a full load and its side-effects
with respect to energy P and 1 inability.

Instead of using d: systems, ging rely
on custom solutions that usually miss important database features.
For instance, declarative queries, schema evolution and complete
isolation from the internal representation of data are rarely present.
The problem with the situation today is in many ways similar to the
past, before the first relational systems were introduced; there are a
wide variety of competing approaches but users remain exposed to
many low-level details and must work close to the physical level to
obtain adequate performance and scalability.

The lessons learned in the past four decades indicate that in or-
der to efficiently cope with the data deluge era in the long run, we
will need to rely on the fund I principles adopted by datab
management technology. That is, we will need to build extensible

y with declarative query processing and self-managing op-
timization techniques that will be tailored for the data deluge. A

growing part of the datab ity rec this need for
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ABSTRACT

The constant flux of data and queries alike has been pushing the
boundaries of data analysis s . The i ing size of raw
data files has made data loadmg an expensive operauon that delays
the data-to-insight time. Hence, recent in-situ query processing
systems operate directly over raw data, alleviating the loading cost.
At the same time, analytical workloads have increasing number of
queries. Typically, each query focuses on a constantly shifting —
yet small — range. Minimizing the workload latency, now, requires
the benefits of indexing in in-situ query processing.

In this paper, we present Slalom, an in-situ query engine that
accommodates workload shifts by mommrmg user access patterns.
Slalom makes on-the-fly partitioning and i lecisi: based
on information collected by lightweight monitoring. Slalom has
two key p
and (ii) a partitioning and indexing tuner tailored for in-situ query
engines. When compared to the state of the art, Slalom offers per-
formance benefits by taking into account user query patterns to (a)
logically partition raw data files and (b) build for each partition
lightweight partition-specific indexes. Due to its lightweight and
adapuve nature, Slalom achieves efficient accesses to raw data with

imal memory i Our experi ion with both
micro-benchmarks and real-life workloads shows that Slalom out-
performs state-of-the-art in-situ engines (3 — 10x), and achieves
comparable query response times with fully indexed DBMS, offer-
ing much lower (~ 3 x) cumulative query execution times for query
workloads with i sing size and dictable access p X

1. INTRODUCTION

Nowadays, an increasing number of applications generate and
collect massive amounts of data at a rapid pace. New research fields
and applications (e.g., network monitoring, sensor data manage-
ment, clinical studies, etc.) emerge and require broader data anal-
ysis functionality to rapidly gain deeper insights from the available
data. In practice, analyzing such datasets becomes a costly task due
to the data explosion of the last decade.

Big Data, Small Queries. The trend of exponential data growth
due to intense data g ion and data collection is dto

P

(i) an online partitioning and indexing scheme,
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manos@seas.harvard.edu

~——DBMS -~———DBMSwith index ===:In-situ

Query Sequence
Figure 1: Ideally, in-situ data analysis should be able to retrieve
only the relevant data for each query after the initial table scan
(ideal - dotted line). In practice today, in-situ query processing
avoids the costly phase of data loading (dashed line), however, as
the number of the queries i the initial i for full
index on a DBMS pays off (the dashed line meets the grey line).

persist, however, recent studies of the data analysis workloads show
that typically only a small subset of the data is relevant and ulti-
mately used by analytical and/or explomtory workloads [1, 18]. In
ddition, modern busi and pplications require in-
teractive data access, which is characterized by no or little a priori
kload knowledge and workload shifting both in terms
of projected attributes and selected ranges of the dataset.
The Cost of Loading, Indexing, and Tuning. Traditional data
management systems (DBMS) require the costly steps of data load-
ing, physical design decisions, and then index building in order to
offer interactive access over large datasets. Given the data sizes
involved, any transformation, copying, and preparation steps over
the data introduce substantial delays before the data can be queried,
and provide useful insights [2, 5, 34]. The lack of a priori knowl-
edge of the workload makes the physical design decisions virtu-
ally impossible because cost-based advisors rely heavily on past
or sample workload knowledge [3, 17, 22, 29, 58]. The workload
shifts observed in the interactive setting of exploratory workloads
can nullify investments towards indexing and other auxiliary data
structures (e.g., views), since frequently, they depend on the actual
data values and the knowledge generated by the ongoing analysis.
Querying Raw Data Files Is Not Enough. Recent efforts opt to
query directly raw files [2, 5, 13, 19, 30, 40] to reduce the data-
to-insight cost. These in-sifu systems avoid the costly initial data
loading step, and allow the execution of declarative queries over
external files without duplicating or “locking” data in a proprietary
database format. Further, they concentrate on reducing costs as-
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Extracting knowledge from data

“Most firms estimate that they are only analyzing 12% of
the data that they already have” [Forrester 2014]

" Growing data collections
= No a priori knowledge about data

= Ad hoc queries

Need for efficient data exploration



From data to results
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Data loading

= Part of the first query
= Both for row-stores and column-stores

" |[n practice:

= Cost increases linearly with the dataset size
= CPU and I/O intensive

Data analysis cost should depend on the data
we need to process
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Querying data in situ*
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Why in-situ query processing?

rdd
Quick data-to-query time -
Why not DBMS?

Partial/no data ownership = cannot transform and load
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NoDB: Technology

Efficient in situ querying

|

selective positional adaptive .. vertical
.. . . . statistics . .
tokenizing indexing caching indexing

|

Minimal changes to the query engine
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11



BOSTON
UNIVERSITY

PostgresRaw

raw files
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Adaptive indexing
mechanism
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Positional map
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PostgresRaw

avoid raw file
accesses

raw files uu:> scan <:>

operator P

4 W)
. User does not need to control when, what,
CaCh ING | how or where data is cached

!I= Classical Data Loading
(abcd efgh iklm )

Data layout

best suited for ...
raw file format
user queries
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PostgresRaw: access paths
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scan operator
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PostgresRaw vs. other DBMS
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Impact of positional map

Random queries on 10 attributes
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s caching enough?
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Adapting to changes
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Graceful adaptation to workload changes
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PostgreSQL vs. PostgresRaw

Tuples: 50m Attrs: 150
File size: 73 GB DB size: 29 GB
150 queries each accessing 5 attrs
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W Loading
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46 queries
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0 w
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NoDB in the research space
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What is missing from the NoDB approach?

7 1
Indexing! Updates! ~ \L
How to index?

What to index?
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ABSTRACT

As data collections become larger and larger, data loading evolves
to a major bottleneck. Many applications already avoid using data-
base systems, e.g., scientific data analysis and social networks, due
to the complexity and the increased data-to-query time. For such
applications data collections keep growing fast, even on a daily ba-
sis, and we are already in the era of data deluge where we have
much more data than what we can move, store, let alone analyze.

Our contribution in this paper is the design and roadmap of a
new paradigm in database systems, called NoDB, which do not re-
quire data loading while still maintaining the whole feature set of
a modern database system. In particular, we show how to make
raw data files a first-class citizen, fully integrated with the query
engine. Through our design and lessons learned by implementing
the NoDB philosophy over a modern DBMS, we discuss the fun-
damental limitations as well as the strong opportunities that such a
research path brings. We identify performance bottlenecks specific
for in situ processing, namely the repeated parsing and tokenizing
overhead and the expensive data type conversion costs. To address
these probl we introduce an ad; indexing mechanism that
maintains positional information to provide efficient access to raw
data files, together with a flexible caching structure.

Our implementation over PostgreSQL, called PostgresRaw, is
able to avoid the loading cost completely, while matching the query
performance of plain PostgreSQL and even outperforming it in
many cases. We conclude that NoDB systems are feasible to de-
sign and implement over modern database architectures, bringing
an unprecedented positive effect in usability and performance.

Categories and Subject Descriptors

H.2.4 [Database M ]: Systems - Query P
[Database Applications]: Scientific Datab

General Terms
Algorithms, Design, Performance

Keywords
Adaptive loading, In situ querying, Positional map

1. INTRODUCTION

We are now entering the era of data deluge, where the amount
of data outgrows the capabilities of query processing technology.
Many emerging applications, from social networks to scientific ex-
periments, are representative examples of this deluge, where the
rate at which data is produced exceeds any past experience. Scien-
tific analysis such as astronomy is soon expected to collect multi-
ple Terabytes of data on a daily basis, while web-based businesses
such as social networks or web log analysis are already confronted
with a growing stream of large data inputs. Therefore, there is a
clear need for efficient big data processing to enable the evolution
of businesses and sciences to the new era of data deluge.

. Although Database M: Systems (DBMS)
remain overall the predominant data analysis technology, they are
rarely used for emerging applications such as scientific analysis and
social networks. This is largely due to the complexity involved;
there is a significant initialization cost in loading data and preparing
the database system for queries. For example, a scientist needs to
quickly examine a few Terabytes of new data in search of certain
properties. Even though only few attributes might be relevant for
the task, the entire data must first be loaded inside the database.
For large amounts of data, this means a few hours of delay, even
wuh pamllel loading across multiple machines. Besides being a

g time i itis also imp to ider the extra
puting d for a full load and its side-effects
with respect to energy P and 1 inability.

Instead of using d: systems, ging rely
on custom solutions that usually miss important database features.
For instance, declarative queries, schema evolution and complete
isolation from the internal representation of data are rarely present.
The problem with the situation today is in many ways similar to the
past, before the first relational systems were introduced; there are a
wide variety of competing approaches but users remain exposed to
many low-level details and must work close to the physical level to
obtain adequate performance and scalability.

The lessons learned in the past four decades indicate that in or-
der to efficiently cope with the data deluge era in the long run, we
will need to rely on the fund I principles adopted by datab
management technology. That is, we will need to build extensible

y with declarative query processing and self-managing op-
timization techniques that will be tailored for the data deluge. A

growing part of the datab ity rec this need for
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ABSTRACT

The constant flux of data and queries alike has been pushing the
boundaries of data analysis s . The i ing size of raw
data files has made data loadmg an expensive operauon that delays
the data-to-insight time. Hence, recent in-situ query processing
systems operate directly over raw data, alleviating the loading cost.
At the same time, analytical workloads have increasing number of
queries. Typically, each query focuses on a constantly shifting —
yet small — range. Minimizing the workload latency, now, requires
the benefits of indexing in in-situ query processing.

In this paper, we present Slalom, an in-situ query engine that
accommodates workload shifts by mommrmg user access patterns.
Slalom makes on-the-fly partitioning and i lecisi: based
on information collected by lightweight monitoring. Slalom has
two key p
and (ii) a partitioning and indexing tuner tailored for in-situ query
engines. When compared to the state of the art, Slalom offers per-
formance benefits by taking into account user query patterns to (a)
logically partition raw data files and (b) build for each partition
lightweight partition-specific indexes. Due to its lightweight and
adapuve nature, Slalom achieves efficient accesses to raw data with

imal memory i Our experi ion with both
micro-benchmarks and real-life workloads shows that Slalom out-
performs state-of-the-art in-situ engines (3 — 10x), and achieves
comparable query response times with fully indexed DBMS, offer-
ing much lower (~ 3 x) cumulative query execution times for query
workloads with i sing size and dictable access p X

1. INTRODUCTION

Nowadays, an increasing number of applications generate and
collect massive amounts of data at a rapid pace. New research fields
and applications (e.g., network monitoring, sensor data manage-
ment, clinical studies, etc.) emerge and require broader data anal-
ysis functionality to rapidly gain deeper insights from the available
data. In practice, analyzing such datasets becomes a costly task due
to the data explosion of the last decade.

Big Data, Small Queries. The trend of exponential data growth
due to intense data g ion and data collection is dto

P

(i) an online partitioning and indexing scheme,

*Harvard University
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Figure 1: Ideally, in-situ data analysis should be able to retrieve
only the relevant data for each query after the initial table scan
(ideal - dotted line). In practice today, in-situ query processing
avoids the costly phase of data loading (dashed line), however, as
the number of the queries i the initial i for full
index on a DBMS pays off (the dashed line meets the grey line).

persist, however, recent studies of the data analysis workloads show
that typically only a small subset of the data is relevant and ulti-
mately used by analytical and/or explomtory workloads [1, 18]. In
ddition, modern busi and pplications require in-
teractive data access, which is characterized by no or little a priori
kload knowledge and workload shifting both in terms
of projected attributes and selected ranges of the dataset.
The Cost of Loading, Indexing, and Tuning. Traditional data
management systems (DBMS) require the costly steps of data load-
ing, physical design decisions, and then index building in order to
offer interactive access over large datasets. Given the data sizes
involved, any transformation, copying, and preparation steps over
the data introduce substantial delays before the data can be queried,
and provide useful insights [2, 5, 34]. The lack of a priori knowl-
edge of the workload makes the physical design decisions virtu-
ally impossible because cost-based advisors rely heavily on past
or sample workload knowledge [3, 17, 22, 29, 58]. The workload
shifts observed in the interactive setting of exploratory workloads
can nullify investments towards indexing and other auxiliary data
structures (e.g., views), since frequently, they depend on the actual
data values and the knowledge generated by the ongoing analysis.
Querying Raw Data Files Is Not Enough. Recent efforts opt to
query directly raw files [2, 5, 13, 19, 30, 40] to reduce the data-
to-insight cost. These in-sifu systems avoid the costly initial data
loading step, and allow the execution of declarative queries over
external files without duplicating or “locking” data in a proprietary
database format. Further, they concentrate on reducing costs as-




Reducing data to query time

60GB smart meter dataset, selectivity 1%, 128GB RAM, 1 thread
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Interactive in situ query processing

attr1 attrN Q; Q;
E A * Partitioning: Shared data ownership
AV d * Physical restructuring prohibited
=
e - I
— === /
a2 * Indexing: Depends on workload
L * A priori index tuning is impossible for exploratory workloads
< |
day 3 * Updates in file interrupt in situ query processing

Incrementally tune only useful data



Adaptive logical partitioning

attr1 attrN Q1 Qn

Enable data skipping
Fine-grained access path selection

Query-based
lteratively partition dataset <

Homogeneous

1) Collect data statistics at runtime
—] 2) Calculate number of sub-partitions

Increase disjointness: Reduce distinct values
Remove tails: Reduce excess kurtosis

T

Set the ground for reducing data access 5



Online index tuning

Q costs vs. gains
attrt attrN =m Should | build or not?

Index types
- Value-Existence (i.e., Bloom filters)

| - Value-Position (i.e., B+ Trees)

Tuning decision

- Based on randomized algorithm

- Cost of scan vs. cost of build + gain

e

Build and drop based on budget

| mEmn

NI ERS LY Maximize gain: build cost vs performance

33



Append and in place updates

attri

attrN Qm

Store partition state
- Calculate hash value (MD5)

Monitor file for modifications

Recognize updated partitions

Fix modified partitions

- Drop/Re-build cache/index
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Minimize overhead of updates
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Slalom architecture
SQL query —

A

Indexing
Structures

Online
tuner

Raw Data Access

&

Raw data

Incremental logical partitioning

Based on data distribution

Adaptive partition indexing

Based on access patterns

Monitors data for updates

Updates data structures

Combining Online Tuning with Adaptive Indexing
Adapt data access to queries and data at runtime
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CSV Positional Index
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1. Positional index is empty
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CSV Positional Index

attributes
tupl . N\ . ¥ . oy . .
up esl ‘coo o e 1. Positional index is empty
000 @) 0000
o000 O 0000 2. Q1 accesses a4 and a6
000 () 0000
000 =) o000 3. Q2 accesses a4 and a9
000 () 0000
000 ) 0000
000 () 0000
000 @) 0000
000 ) 0000
Indexed attributes: a4, a6, a9
p4, p6 p4, p6, p9
p4, p6 p4, p6, p9
>
p4, p6 p4, p6, p9
p4, p6 p4, p6, p9
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ypes of updates
RERRRIN
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In-place update

OO ICOO0O0O0O0O0O0O0OCT )
OO ICOO0O0O0O0O0O0O0OCT )
OO IO OO0 0O0O0OC )
OO IO OO0 0O0O0OC )
OO IO OO0 0O0O0OCOd )
OO IO OO0 0O0O0OCOd )
O« ICOO00O0O0O0O0O0OCT )
O« ICOO00O0O0O0O0O0OCT )
O« ICOO00O0O0O0O0O0OCT )
O« ICOO00O0O0O0O0O0OCT )
OO ICO OO0 0O0O0OCO )
OO« ICO OO0 0O0O0OCO )
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Append

Goal: Efficiently correct the auxiliary structures
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|[dentifying in-place updates
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* Store partition state

Calculate MD5 hash

e Monitor file

Using OS support (iNotify)

* Find updated partitions

Calculate new MD5 hashes
Compare with previous state

a94a8fe5 |
ﬁ

098f6bc

d4621d:

\~ =4

73cade4

e832627

ad0234I : :

29205b9 |
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Fixing the touched partitions

* We find the diff offsets using the PM

* We store this diff in a separate array
* Using it when fetching records from file

RN TR B R R

O @ ) O OO OO before update

y
@& ( ) ) O O O O O After update

Diff: 2 characters

e Auxiliary structures are dropped

for the touched partitions.
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|[dentifying append-like updates

e Add new rows to a new

partition

* Further split new partitions

e Statically

* Dynamically
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Experimental setup

Hardware:

- Xeon CPU E5-2660 @ 2.20GHz, 2TB HDD - 7200RPM, 128GB RAM
Systems:

- Disk-based: PostgreSQL

- In-Memory: DBMS X
- In situ: PostgresRAW, Slalom with Stochastic Cracking
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From raw data to results

59GB uniform dataset, 128GB RAM, cold caches,1000 point & range queries, selectivity: 0.5%-5%

1439.71 757.96
7007 e R @ Load
' 500 - H Index
§’4OO
e 296.59 D Query
.= 300 A
—
200 -
98.92
100 - 80.39
.
O T T T T T T
PostgreSQL PostgreSQL with DBMS X DBMS X with PostgresRAW Cracking Slalom
index index

In-situ adaptive indexing achieves interactive access -



Working under memory constraints

55GB uniform dataset, 128GB RAM, cold caches, selectivity: 0.1% (select 10 consecutive values)

= 15 - [1Cache Size SBtree mEBloomfilter --Limit Response time 1000
O T S e e e e e e e e e o e e o . .

:10 - S DA m S @ @ NN NN N L 100
o

£ 5 - | | | L 10
Q

= 0 1

1 2 3 4 5 6 7/ 8 9 10
Query Sequence

1oooA Memory budget: 10 GB x Memory budget: 12 GB + Memory budget: 14 GB
%

@)

100 - X
Y - A
X

A A A
¥ ¥ X

X D

A A A
x X ¥
+

+X D>
+ X D
+ X D
+ X D
+X D

+ X D

2 4 6 38 10 12 14 16 18 20

BOSTON Query Sequence .
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Uniform data query sequence

59GB uniform dataset, 128GB RAM, cold caches,100 point & range queries, selectivity: 0.5%-5%
a PostgreSQL o PostgreSQL with index = DBMS X < DBMS X with index + PostgresRAW = Cracking e Slalom

A +

100 *XAAAAAAAAAAAAAeMAAAAAAAAAA BABAAARAAABRAAAARA AR +AAAAA$A AAAAAAAeAAAeAAAAAAAAAAAAAAAAA
— +.+++ ++++++++ + Tt e, + ++ .+++++++++ + +++ ++++++++ +Het, +. +++++++ P L +++ + 4+++
o N ST Ak e Fan®008 000000T 85  0neT 00, 000 TORRRRRNR 1y THR KxMyx® % Ryt xt KR ux
7)) [

—~— O %x gx % - ® .‘. ® ® ®© %% 2®
cé)10<>. @“%; 9.??"?9"?‘?--.. = v T -8%? R O "?‘?9
[ O-UGQQOOQQ-QQ-,A._----._OOQOO.EO 0 022 X oXX
<00 g o~ $Qe© 00 ¢ S ™ T T e o= | T8 TQORe™ OO= OTTEe=50 Q660 OT 666
1 - <o 9 “ 9 e ) o0 o OO0 ) 6 e L ’ L 4 4 ® L 2
o o
o
o0
g 3 38 8 oo 3 28 838
1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100
Query Sequence
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Execution breakdown

59GB uniform dataset, 128GB RAM, cold caches,1000 point & range queries, selectivity: 0.5%-5%

m File Access Time W Cache Access Time & Insert to Cache
Insert to Btree Insert to BF B Insert to Metadata
[1 Btree Access Time B Query Logic m BF/Meta Access Time
100% 0y TR BB LE
o_ " I8 N NI
T70% 1§ BN 7 v § : wl!l|
§60%-§3 % Q?;??,
O HENU VUYLV A9 99 7 7
oy A B O U0 YV, i NN/
a 50% 8 E ¥ 7 _ : 7 7 7
175927 B 197959 % 2
S \HEOZCH B LY V7 d K&
S30% it B 7
@ 20% -
>
W 10%
0% -
5 9 31 35 39 43

13Query Sequence
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Smart meter workload query sequence

59GB uniform dataset, 128GB RAM, cold caches,100 point & range queries, selectivity: 0.5%-5%
a PostgreSQL o PostgreSQL withindex x DBMS X < DBMS X with index + PostgresRAW = Cracking e Slalom

i 7o +
INCYAINNANNNNN ANANAIA ' AIAIANIANNNY AN A\VIA\. A, AIANAN W m
100 _%eeeeAAeeeAAeAAAAAAAAAAAAAAAAA FFE bbbt bbb bbb g it s OOADDODAMMANANDMAANDA, o iy FELEFIOOA, 4y
4TI TR bk b gt F00008800000000020000000000000Q iy b+ $00000 et 4+ OOVO
2030969656 36 3696 3696 36 9636 36 36 36 3¢ 36 3¢ 96 36 96 3¢ 36 3¢ 3¢ 3¢ 3¢ 3¢ % oo x "xxxxxxxxxxxxxxxxxxxxm AR XN
— . 000000 0000000%0g0000 000% e® o
(&)
vg 10 - eQ Q%QOQQ .90 e )
= o Oee00®® SO0 © o
- 1 - ® ® 9 [ eooe %
0000 (o]
0000 °
¢ 00 000600, 0 490 oo %0
N | 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

Query Sequence
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Memory consumption

59GB uniform dataset, 128GB RAM, cold caches,100 point & range queries, selectivity: 0.5%-5%

O PostgreSQL with index x DBMS with index - Cracking - Slalom
14 -
PERARORORRRAIIIARRRIIIIPRRRIAIRIIRRRRAIIIRORRAIIIOORRROIR®
12 A
5t I
G
= 8-
£ 6 -
QD 4 = 0 e ;e e e e - --m-=- - ..0000000000000Oooooooooooooooooo
= 4 -
2_ e 6 6 o6 o6 o o o o o o o o o
O 1 1 1 1 1 1 1 1 1 1

10 20 30 0 60 70 30 90 100

40
Query Sequence
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Comparing Cracking to Slalom

59GB uniform dataset, 128GB RAM, cold caches,1000 point & range queries, selectivity: 0.5%-5%

Random access/Uniform data Sequential access/Uniform data
1500 - Slalom 4000 - Slalom
g 1000 < Cracking g 3000 - < Cracking
2 ] o Stochastic Cracking £ o Stochastic Cracking
v Q 2000 -+
E 500 ¥ <] B 8 8 B DR RIS
= E 1000 A
® ® B B QB R RS
O | | O | 1
1 10 100 1 10 100
Query Sequence Query Sequence
Random access/Clustered data Memory Footprint
1200 lal >
. Slalom —
8) 1000 . 4 —
X @ X XXX XX XXX
g 200 Crac klng. | O X
o 600 o Stochastic Crackin - X

Slalom takes advantage of the underlying data

Cracking converges faster to final state “



Minimizing data access

59GB uniform dataset, 128GB RAM, cold caches, selectivity: 0.5%-5%

Cache M Cache + Zone Maps [ Cache + Zone Maps + BF H Cache + Zone Maps + BF + Btree
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Append-like updates

24GB uniform dataset, 377GB RAM, cold run, Point queries; 1% selectivity

1000 - - Slalom »-Postgresql with index
Adaptive
partitioning I
o]0
O 100 - ‘ﬂ
2 LA
g »‘% ““““““"“““;,",',V‘v",,“,‘.““““““““‘
— »00000»’ DOOOOOOO0 000C D00« T
10 - |

Append 4.2GB Append 4.9GB

1 6 11 16 21 26 31 36 41 46 51 56 61 66 /1 76 81 86

Oi1erv Sealience

Slalom adapts partitioning after an append
It offers competitive performance to a loaded system s4



Takeaways from Slalom

Speed-up in situ query processing
Take advantage of data distribution when tuning databases

Online logical partitioning algorithm
Extract logical clustering within the data

Low-overhead online fine-grained index selection
Using a randomized algorithm

Performance comparable to in-memory DBMS
3x lower cumulative exec. time
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