BOSTON . i
CS 561: Data Systems Architectures

class 18

Asymmetry & Concurrency Aware Storage
Management

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

Evolution of Storage Hierarchy

HDD SSD NVM SSD

BOSTON
UNIVERSITY

Hard Disk Drives

BOSTON
UNIVERSITY

Hard Disk Drives

E =
v = =

Symmetric cost for Read
& Write to disk

v v

One I/0 at a time

Solid-State Drive (SSD)

BOSTON
UNIVERSITY

Solid-State Drive (SSD)

il @

No mechanical Fast access, High chip density,
movement Low energy consumption

BOSTON
UNIVERSITY

Internals of an SSD

Channel 1 iy — Chip2 e+ ChipN
Controller :

ChamneIN - opip1 —— Chip2z +++ ChipN

Die 1 Die N

Planel ooo oo o0 ooo

Block 1 Page 1

Page N

Block N
Parallelism at many different levels

BOSTON (channel, chip, die, plane, block)
UNIVERSITY

Writes in SSD

Out-of-place updates cause invalidation

Invalidation causes garbage collection.

k Block O

Plane

BOSTON
UNIVERSITY

10

BOSTON
UNIVERSITY

Writes in SSD

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block O

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block 1

11

BOSTON
UNIVERSITY

Writes in SSD

Free Free Free
Free Free Free

Free Free Free
Free Free Free Free Free Free

Block O Block 1

Writing in a free page isn’t costly!

12

BOSTON
UNIVERSITY

Writes in SSD

Free Free Free

Block O

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block 1

13

Update
A, B,C,D

BOSTON
UNIVERSITY

Writes in SSD

o e)l r

Block O

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block 1

14

Update
A, B,C,D

BOSTON
UNIVERSITY

Writes in SSD

o e)l r

Block O

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block 1

15

Update
A B CD

BOSTON
UNIVERSITY

Writes in SSD

o e)l r

Block O

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block 1

16

Update
A B CD

BOSTON
UNIVERSITY

Writes in SSD

o e)l r

oEn

Block O

Free Free Free
Free Free Free

Free Free Free
Free Free Free

Block 1

17

Update
A, B,C, D

BOSTON
UNIVERSITY

Writes in SSD

Free Free Free
Free Free Free

Block O Block 1

el

Not all updates are costly!

18

Writes in SSD

What if there is no space? % W %/
// e -

//%%?//

Block N

Writes in SSD

What if there is no space? % W y//
Q i o

//%//

Garbage Collection!

Block N

What if there is no space?

Garbage Collection!

BOSTON
UNIVERSITY

Writes in SSD

Valid pages:

4 \ \ \ 4 \ \
Erased Erased Erased Erased Erased Erased
_ J J J _ J J
4 \ \ \ 4 \ \
Erased Erased Erased Erased Erased Erased
_ J J J _ J J
4 \ \ \ 4 \ \
Erased Erased Erased Erased Erased Erased
_ J J J _ J J
4 \ \ \ 4 \ \
Erased Erased Erased Erased Erased Erased
_ J J J _ J J
Block O Block N
FIG|H|A |B|C|DI M|N|O|P|Q|R

Writes in SSD

What if there is no space?

Free Free Free

Free Free Free
Free Free Free

Block N

BOSTON 22
UNIVERSITY

Garbage Collection!

Writes in SSD

What if there is no space?

Free Free Free

Free Free Free
Free Free Free

Block N

Garbage Collection!

Higher average update cost (due to GC) =2 Read/Write asymmetry

BOSTON 23
UNIVERSITY

HDD vs SSD
HDD SSD

Read/Write Asymmetry

)

Symmetric cost for Read & Write

E:D_’ L.,
One 1/0O at a time
BOSTON / ' Concurrency
UNIVERSITY

Measuring Asymmetry/Concurrency (With FS)

Device

PCle SSD - Pas10 (178) 000 X 10° -©-4K Random Read ©-8K Random Read
200 60000000000B00C0
L 400 - L009%%
®,
=300 1 o
0000600000080
200 | @ o000
100 {%°
O ("'éb [[[[[I

0 50 100 150 200 250 300

BOSTON
Threads 2

Measuring Asymmetry/Concurrency (With FS)

Device

PCle SSD - Pas10 (178) 000 X 10° -©-4K Random Read ©-8K Random Read
500 - 60000000000B00C0
L 400 - L009%%
O s
— 300 - ®,@
e e socaccesoceaces
200 | @ o000

100 -
N

0 50 100 150 200 250 300

SRy # Threads
Threads 2

Measuring Asymmetry/Concurrency (With FS)

Device

PCle SSD - Pas10 (178) 000 X 10° -©-4K Random Read ©-8K Random Read
200 60000000000B00C0
£l400 - L009%%
Q %
—1300 - ®,@
e e socaccesoceaces

100 -
A

0 50 100 150 200 250 300

SRy # Threads
Threads 2

Measuring Asymmetry/Concurrency (With FS)

Device

PCle SSD - Pas10 (178) 000 X 10° -©-4K Random Read ©-8K Random Read

200 60000000000B00C0

L 400 - L009%%

®,

= 300 7

50000000C00B0000ERO

200 + p_o0000
100

0 50 100 150 200 250 300

BOSTON
Threads 2

Measuring Asymmetry/Concurrency (With FS)

Devi
PglveICSeSD-leSlO(lTB) 600 x10° -©-4K Random Read -©-8K Random Read
200 60000000000B00C0
2 400 - 45@@@@@@
®,
— 300 - 9
/ 50000000C00B0000ERO
200 | f oo
100 14

O T [[[[[I
0 50 100 150 200 250 300

BOSTON
Threads 2

Measuring Asymmetry/Concurrency (With FS)

Devi
PglvelcSeSD _pas10(1tB) 600 X 10° -©-4K Random Read ©-8K Random Read
200
@@@@@gqaswevwveeO
D 400 - ﬁge@@@
O
— 300 - %
, e e socaccesoceaces
200 - f @997

100 /5

O T [[[[[I
0 50 100 150 200 250 300

BOSTON
Threads 10

Measuring Asymmetry/Concurrency (With FS)

Device 3
pCle ssD - Pas1o (1t8) 000 1*10° -©-4K Random Read -©-8K Random Read

500
£ 400
= 300
200
100

0 50 100 150 200 250 300

BOSTON
Threads ’

Measuring Asymmetry/Concurrency (With FS)

Device
PCle SSD - P4510 (1TB)

BOSTON
UNIVERSITY

600
500
400

2

& 300
200
100

x10°

G 4K Random Read -<4K Random Write
5 8K Random Read -<8K Random Write

- COEOOEOOOEOOFEO00
©

o

© 2.8%
@@@@@@@@@1%@ 00RPOGEO
IX
Q %XLA/ N /N
50 100 150 200 250 300
Threads 32

Measuring Asymmetry/Concurrency (With FS)

Device 600 - 103 > 4K Random Read -<4K Random Write
PCle SSD - P4510 (1TB) *10° & gk Random Read 8K Random Write

500 S

400
N

= 300

200

100

0 50 100 150 200 250 300

BOSTON
Threads 53

Measuring Asymmetry/Concurrency (With FS)

Device 600 - 103 > 4K Random Read -<4K Random Write
PCle SSD - P4510 (1TB) *10° & gk Random Read 8K Random Write

500 S

400
N

= 300

200

100

0 50 100 150 200 250 300

BOSTON
Threads 54

Measuring Asymmetry/Concurrency (With FS)

Device 600 - 103 > 4K Random Read -<4K Random Write
PCle SSD - P4510 (1TB) *10° & gk Random Read 8K Random Write

200 ~ @@G@@@@@@@G@@@G@@o
c

For 4K random read, 400 - 5

oC"
Asymmetry: 2.8 % 300 @

Concurrency: 80

200

100

0 50 /100 150 200 250 300

BOSTON
Threads 55

Measuring Asymmetry/Concurrency (With FS)

Device 600
PCle SSD - P4510 (1TB)

500

For 8K random read, 400
Asymmetry: 1.9 é 300
Concurrency: 40 200
100

0

BOSTON
UNIVERSITY

) . 5 4K Random Read -<4K Random Write
*10° 5 8K Random Read -<8K Random Write

0 /50 100 150 200 250 300
Threads 36

Measuring Asymmetry/Concurrency (With FS)

Device 600
PCle SSD - P4510 (1TB)

500

For 8K random write, 400
Asymmetry: 1.9 é 300
Concurrency: 7 200
100

0

BOSTON
UNIVERSITY

) . 5 4K Random Read -<4K Random Write
*10° 5 8K Random Read -<8K Random Write

0 \ 50 100 150 200 250 300
Threads 37

Measuring Asymmetry/Concurrency (With FS)

Device
PCle SSD - P4510 (1TB)

Asymmetry and
concurrency depends
on request type and

access granularity.

BOSTON
UNIVERSITY

600
500
400

2

& 300
200
100

x10°

G 4K Random Read -<4K Random Write
5 8K Random Read -<8K Random Write

- COEOOEOOOEOOFEO00
©

o

© 2.8%
@G@@@oe@@l%@ 00RPOGEO
IX
Q %XLA/ N /N
50 100 150 200 250 300
Threads 38

Empirical Asymmetry and Concurrency

4KB 8KB
Devices o k, k, a k, k,,
Optane SSD 1.1 6 5 1.0 4 4
PCle SSD (with FS) 2.8 80 8 2.0 40 7
PCle SSD (w/o FS) 3.0 16 6 3.0 15 4
SATA SSD 1.5 25 9 1.3 21 5
Virtual SSD 2.0 >11 >19 1.9 >6 >10

BOSTON ,
UNIVERSITY

Which module of a DBMS interacts with

storage the most?

Bufferpool Manager

BOSTON
UNIVERSITY

Buffer Pool Page Eviction Algorithm

Classical

Request (page) ;
If (page 1n BP) -> return page

not full -> Read requested page from Disk

Select a page for eviction based on replacement policy

If the candidate page 1s dirty, write to disk
Drop the candidate page from BP
Read requested page

[1f the request 1s a write, an in-memory update takes place that

&@m Che dirty bit as well]
BOSTON h
UNIVERSITY

Buffer Pool Manager

Buffer Pool
. ’ - < Free frame

Disk Main Memory

BOSTON 24
UNIVERSITY

Disk page

+«— Dirty page

Traditional Buffer Pool Manager

Page request comes

Buffer Pool
. ’ - < Free frame

Disk Main Memory

BOSTON 45
UNIVERSITY

Disk page

+«— Dirty page

Traditional Buffer Pool Manager

Page request comes

Buffer Pool
. ’ < Free frame

If page is not in BP,
Disk fetch from disk Main Memory

BOSTON 46
UNIVERSITY

Disk page

+«— Dirty page

Traditional Buffer Pool Manager

° Buffer Pool

—

If BP is full, one page is selected for eviction
BOSTON based on page replacement policy 47
UNIVERSITY

Page request comes

Disk page

+«— Dirty page

Traditional Buffer Pool Manager

° Buffer Pool

—

Page request comes

Disk page

+«— Dirty page

/

If BP is full, one page is selected for eviction
BOSTON based on page replacement policy 48
UNIVERSITY

Traditional Buffer Pool Manager

Page request comes

Buffer Pool

Disk page

—J

If the page is dirty, it is written back to disk

BOSTON 49
UNIVERSITY

+«— Dirty page

Traditional Buffer Pool Manager

° Buffer Pool

If the page is dirty, it is written back to disk

BOSTON and evicted .
UNIVERSITY

Page request comes

Disk page

+«— Dirty page

Traditional Buffer Pool Manager

° Buffer Pool

The requested page is fetched in its place
(exchanging one write for a read) .
UNIVERSITY

Page request comes

Disk page

+«— Dirty page

Popular Page Replacement Algorithms

LRU (Most Popular)
LFU, FIFO (Simple)

Clock Sweep (Commercial)

—

CFLRU
— Flash-Friendly

LRU-WSR

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

|

Working
region

|

Clean-first
region

53

BOSTON
UNIVERSITY

D

|

Working
region

Clean-first

region

54

MRU page ~_

After Eviction:

BOSTON
UNIVERSITY

CFLRU

Candidate for eviction

p6 p> p4 p3 p3pl
DIC/D/D|C|D
)
| |
Working Clean-first
region region

__LRU page

Next Candidate for eviction

p7 p6 p5 p4 p3 pl/

C/DIC|D|D|D
)
| |
Working Clean-first
region region

55

LRU-WSR

p6 p5> p4 p3 p2 pl

DIC/IDIDICI|D Cold flag NOT set!
Cold flag | 1 00 0< This is be moved to front

setting the cold flag

pl p6 p> p4 p3 p2
D|D|C|D|D|C«——Candidate for eviction
Coldflag | 1 | 1 00

After Eviction:
p7 pl p6 p> p4d p3

Cold flag 1]1 00

56

BOSTON
UNIVERSITY

LRU-WSR

p6 p5 p4 p3 p2 pl

DIC|IDID|CI|D Cold flag set!
Cold flag | 1 00 1< Candidate for eviction

After Eviction:

Cold flag 1 0|0

BOSTON .
UNIVERSITY

The Challenge

Buffer Pool

=
N’

All these policies exchange one read for one write!

: -
Is this Fair:)
UNIVERSITY

Disk page

<+« Dirty page

The Challenge

e (Challenge 1) With write asymmetry,] i

it is NOT fair to exchange one write i
for one read. S E_ _______________

I :

0 |

s :

: :

é Clock /Second :

8 Sweep/ \ Chance :

Asymmetry = 1 a

BOSTON 59
UNIVERSITY

The Challenge
|
e (Challenge 1) With write asymmetry,] i
it is NOT fair to exchange one write i
|
foroneread. o
. r
|
? Optimiz!ing for CFLRU/C
U Asymmetry CFLRU/E
2 ! DL-CFLRU/E
o [
5| GGy | RV G

Asymmetry = 1 a

BOSTON .
UNIVERSITY

The Challenge

e (Challenge 1) With write asymmetry, Optimization

|
|
|
|
|
k Prefetching) (W ite-back’\s ? ? ?
Batching :
|
|
|

it is NOT fair to exchange one write

Clock Second
Sweep/ \ Chance

concurrency.

S 5
o0 o
for one read. g &
- T~ é 8 _______ :_ _______________
[£ 8
* (Challenge 2) Bufferpool Managers . 53 !
L] QQ) Optimizling for CFLRU/C
do NOT expressly utilize the device & Asymmetry CFLRU/E
2 DL-CFLRU/E
Q
=
o
Q

Asymmetry = 1 a

BOSTON 61
UNIVERSITY

The Challenge

I
=
e (Challenge 1) With write asymmetry, Optimization | ACE
. . Kk Write-back, design
it is NOT fair to exchange one write Batching /)

for one read. =

Optimizling for
Asymmetry

Concurrency

* (Challenge 2) Bufferpool Managers

CFLRU/C

CFLRU/E
DL-CFLRU/E

do NOT expressly utilize the device

concurrency.

Concurrency = 1
20

%?@

G A

Om@.

5

= 5

8@@

Asymmetry = 1 04

BOSTON
UNIVERSITY

Bufferpool Design Space

BOSTON
UNIVERSITY

Classical Bufferpool Design Space

[Bufferpool Manager]

~

~

Read-ahead Policy

Eviction Policy

Whi . When to prefetch?
?

ich page to evict: -Prefetch on miss

-LRU - FIFO .)

"NRU 20 Which pages?

-Clock - ARC

-Second Chance -History-based

-CFLRU -CFLRU/C Flash-
-LRU-WSR -CFLRU/E friendly
-CCF-LRU -DL-CFLRU/E policies

. -Sequentially i
e smmwlmm————————————————————— e s oo
UNIVERSITY

How many pages”?
-1 or x pages

i -Sequential/ i
How to prefetch?

Bufferpool Design Space

[Bufferpool Manager] Red indicates new

- design elements

“">=--.___ Optional
\ 4 ,__________::::: e
Eviction Policy Write-back Policy . Read-ahead Policy
How many pages to evict? How many pages to flush? " When to prefetch?
Which pages to evict? -1 page . -Prefetch on miss |
_LRU s - n pages(exploit k,,) i Which pages? i
-NRU -20Q Which pages to flush? | -Sequential |
-Clock - ARC -dirty pages following | -History-based |
'SecondChance ___________________________ replacameni elgo. How many pages?
-CFLRU -CFLRU/C Flash- | How to write? | Lo e i
-LRU-WSR -CFLRU/E friendly - one-at-a-time vs. ' How to prefetch? i

_CCF-LRU -DL-CFLRU/E || policies concurrently Seq/Coneurrently
B O O 1 UIN L _ . _5 _____ 1
UNIVERSITY

Asymmetry/Concurrency-Aware
(ACE) Bufferpool Manager

ACE Bufferpool Manager

\QI
Use device’s properties

2 21
%3? E{‘—'

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

ACE Bufferpool Manager

Flush multiple dirty pages concurrently

Evict 1 page (to not disrupt locality)
or
Evict multiple pages (if we trust prefetching)

Goal: 1 read vs. o concurrent write backs
(more if concurrency permits)

68

ACE Bufferpool Manager

Buffer Pool

P | P2 | Py | Po
Ps | Pz | Pis | P

p | Dirty page

Clean page

any page

. Pis | P7 | P2s | Pz
replaCement p y\ 1 7

= Writer DN gyictor F=] Reader .
0O LHEJ with PF
— @ Seq. Stream | | History-based
— | Cor-lcurrent pZ* P1| Ps p'\g Prefetcher Prefetcher wW / o PF
gl_—> Device-aware —\ -
L. ity Candidates m @
ConC Parallelly prefetch
back n dirty pages X pages

69

BOSTON
UNIVERSITY

Buffer Pool Page Eviction Algorithm

Request (page pg) ;s
If (page 1n BP) -> return page
Else

If BP not full -> Read requested page from Disk
Else
- Select a page pg for eviction (?) based on replacement policy

BOSTON .
UNIVERSITY

Module: Writer

Concurrent write-back

Buffer Pool
 |fpgisdirty, then write n dirty pages concurrently P
[7] Clean pag Ps | Piz | Pis | Pro
where, n = device’s write concurrency (k) \

[EhE_] Reader
Seq. Stream | (History-based
Prefetcher Prefetcher
B-8-8) 9FF

* Ifpgisclean, skip to Evictor

oncurre oo || i)
evice-aware
Tt andidates
Concurrently write . Parallelly prefetch
back n dirty pages g E | X pages

The n pages are selected following the order

of the underlying page replacement algorithm

BOSTON .
UNIVERSITY

Module: Evictor

Piggy-backs on the underlying replacement algorithm Buffer Pool
Dirty page Pr | P2 | Py | Po

If prefetching is not enabled) comps (P2 P e P \

. . . 01
v’ Evict 1 page (following the replacement algorithm) O evicor B Reader

A - |pde] [f;ifizzaiﬂ EH?::;;';&S:T

If prefetching is enabled & pg is clean \ /

s ST Y Pl et

v’ Evict 1 page

If prefetching is enabled & pg is dirty
v’ Evict n pages

BOSTON .
UNIVERSITY

Module: Reader

Fetch the requested page pg

If prefetching is enabled (n pages were evicted)

v’ Prefetch concurrently n-1 pages Buifer Pool
, Pr | P2 | Ps | Po
. Dirty page
* Sequential prefetcher] cleanpage |_P5 | Piz | P | P
Pz | P7 | P2s | P \

* History-based prefetcher 1
% Writer E'a Evictor la\“aj Reader
s oo | ([P P [?iétﬁii?} {H;f:zﬁz;if:d}

_|—> fal Frwdidates m {9

ConcurrerN T el %y prefetch
back n dirty pages X pages

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

Let’s Take a Look at an Example

MRU page

\

LRU page

/

B (6

9

Let’s assume: o = 3, LRU is the baseline
replacement policy & red indicates dirty page

Next, a read request for page 8 arrives

76

BOSTON
UNIVERSITY

Let’s Take a Look at an Example

lCandidate for eviction

B [6/2(3|5|7]|4|9

Since candidate page is

After Eviction: B 6|1213/5|74

B (8|6]/2|3|5|7|4

MRU/

Next, a write request for page 1 arrives

clean, we simply evict it

77

Let’s Take a Look at an Example (o = 3)

LRU

Candidate
\;

B [8|6|2|3|5|7|4

Eviction:
evict candidate (4)

78

Let’s Take a Look at an Example (o = 3)

LRU ACE LRU(w/o PF)
Candidate Candidate
! \
B [8|6|2|3|5|7|4 B [8|6|2|3|5|7|4
Eviction: Write-back: 2,5,4 concurrently
evict candidate (4) written

Eviction: 4 is evicted
B | [8l6]2]3]5]7 B 86Qﬁ@y
2

3|5|7

213|5(7 B |1/8\6

Let’s Take a Look at an Example (o = 3)

LRU ACE LRU(w/o PF) ACE LRU(w/ PF)
Candidate Candidate Eviction Window
8862357j 8 [8l6l2]3]5]7]4 B |8|6]|2(3||5]|7|4
. . Write-back: 2,5,4 concurrently
EVIC;[\I/Ci)c?:candidate @ erte-back:2,5,4V5c:i2;:eur:rently Eviction: 5,7.4 is evicted

Eviction: 4 is evicted Prefetch: 9,0 (as LRL;)
g8 | [8[6]2[3]5]7 3 86@3@7 B 8623@@)
) 9

1/8|6|2({3|9|0

3|5(7 B

21(3(5]7 B [1/8|6

80

Fvaluation

BOSTON
UNIVERSITY

BOSTON
UNIVERSITY

Experimental Evaluation

Implementation in PostgreSQL
Clock, LRU, CFLRU, LRU-WSR vs. their ACE counterparts
Evaluation on 4 synthesized traces and TPC-C benchmark

3 storage devices: NVMe SSD, Regular SSD, Virtual SSD
a=3,k,=8 a=15k,=8 a=2,k,>19

82

Experimental Evaluation

Device: NVMe SSD

SOA EEEE ACE wo pf 1 ACE w pf B2 o=3,k,=8

700 F ' ' ' ' =
600 | ACE improves runtime by >20%

%500 1 1 (for a mixed skewed workload)

2400 | -

=

L300 .

— 500 | 1 Negligible increase in buffer miss (<0.004%)
100 | .

Clock LRU CFLRU LRUW
Mixed Skewed Trace

83

0
BOSTON
UNIVERSITY

Experimental Evaluation

SOA BB ACE wo pf =] ACEw

pf &

700 F ' ! '
600 |
5500 f
2400 |
Y300
<
— 200 |
100

0
BOSTON
UNIVERSITY

Clock LRU CFLRU LRUW

Write-intensive Skewed Trace

Device: NVMe SSD
a=3,k,=8

Higher gain (>30%) for write-intensive

workloads because of smart batching

84

Experimental Evaluation

Device: NVMe SSD

SOA BB ACE wo pf =1 ACE w pf =3 o=3,k,=8

700 B T T T T]

600 ¥ | Read-intensive workloads also
3500 - : _ |
= have substantial gain (5-15%)
®) 400 B |
=
£ 300 1 Benefits comes mostly through
A I] .

200 prefetching

100 T :

Clock LRU CFLRU LRUW

Read-intensive Skewed Trace

85

0
BOSTON
UNIVERSITY

Experimental Evaluation

SOA BB ACE wo pf =] ACEw

pf &

700 F ' ' '
600 |
5500 f
2400 |
Y300
qv)
— 200 |
100

Mixed Uniform Trace

0
BOSTON
UNIVERSITY

Clock LRU CFLRU LRUW

Device: NVMe SSD
a=3,k,=8

The benefits remain significant

(¥10%) for uniform workloads

86

Experimental Evaluation

Device: Regular SSD
a=15k,=8

14 + Clock+ACE I CFLRU+ACE e
LRU+ACE LRUW+ACE 1
1.2 - - o -
3 i Even for devices with asymmetry 1.5,
o 1f :
X (<
- % o .
S 08| 1 concurrency leads to up to 20% benefit
KX o
o 0.6 $ 8
S 5
0.2 T 5 I

87

0
BOSTON
UNIVERSITY

Experimental Evaluation

Device: Virtual SSD
a=2,k,>19

1.6 T T T |
Clock+ACE I CFLRU+ACE EXX]
14 LRU+ACE == LRUW+ACE >_

The benefits remain for virtual SSDs

: that we cannot fully benchmark

0 %
UNIVERSITY

Experimental Evaluation

Device: NVMe SSD

1.9 -
=LRU <CFLRU ~+LRU-WSR *Clock a=3 k =8
7 W

1.7 1
215 -
85 For write heavy workloads, gain
Q
D-* —
s of ACE can be as high as 1.75x

1.1 +

09 I I I I I I I I I I :‘

0:100 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10 100:0
Read/Write Ratio

BOSTON ,
UNIVERSITY

Experimental Evaluation

Device: NVMe SSD
1.5 -

<LRU <CFLRU +LRUW Clock

a=3,k,=8

ACE performs particularly well

Speedup

under memory pressure

0.9 | | | | I R
2 4 6 8 10 20 50 100

Bufferpool size (%)

BOSTON .
UNIVERSITY

Experimental Evaluation

Device: NVMe SSD

149 SLRU =CFLRU +LRUW xClock a=3,k,=8
1.3 -
g1z - There is an optimal |
%1.1 | concurrency for each device.
{ -
0.9 I I | | ! ! ! !

BOSTON .
UNIVERSITY

Experimental Evaluation (TPC-C)

Warehousew (Stock W (Iltem
100K L W*100K J W L100K(fixed)
10
District
W*10
3K
Customerﬂ (Order ﬂ (New-Order
W*30K L W*30K+ 0-1 L W*5K
1+ 10-15
[History J [Order-LineJ
W*30K+ W*300K+
BOSTON

UNIVERSITY

Experimental Evaluation (TPC-C)

TPC-C consists of 5 transactions
NewOrder (45%) R/W Mix
Payment (43%) R/W Mix
OrderStatus (4%) R-only
StockLevel (4%) R-only
Delivery (4%) W-heavy

BOSTON
UNIVERSITY

Experimental Evaluation (TPC-C)

Read-Only 1

Read-Write]

Read-Write]

Write-Only I -

Read-Only 1

[PA9T003S

SN3eISIIPIO

JudwARJ

IOpI0 MON

XTIN

PAYDPOIS

sn3e}SIAPIO

JuswAeJ

IOpI0 MIN

XTN

SAT[R(]
[PAY 035

SNJeISIIPIO

JUSWIAR]

I9pI0Q MIN

XTIN

IAT]D (]
[PAY 035

SNJe1SIAPIO

juowAeJ

IOpIO MIN

XTN

2 + Read-Write]

CFLRU LRUW Clock

LRU

BOSTON

e
=
n
&
K
W
4
D

BOSTON
UNIVERSITY

Conclusion

Make asymmetry and concurrency part of algorithm design

... hot simply an engineering optimization

Build algorithms/data structures for storage devices
with asymmetry a and concurrency k

index structures graph traversal algorithms

O

95

BOSTON . i
CS 561: Data Systems Architectures

class 18

Asymmetry & Concurrency Aware Storage
Management

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

https://bu-disc.github.io/CS561/

