
class 18

Asymmetry & Concurrency Aware Storage
Management

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

3

Evolution of Storage Hierarchy

HDD SSD NVM SSD

4

Hard Disk Drives

5

Symmetric cost for Read
& Write to disk

One I/O at a time

Hard Disk Drives

Solid-State Drive (SSD)

7

Solid-State Drive (SSD)

8

No mechanical
movement

Fast access, High chip density,
Low energy consumption

Internals of an SSD

Controller
Chip 1 Chip 2 Chip N

Chip 1 Chip 2 Chip N

…
…

…

Channel 1…

Channel N

…Die N
Plane1 PlaneN

Block 1

Block N

…

…Die 1
PlaneN

Page 1

Page N
…

Plane1

Parallelism at many different levels
(channel, chip, die, plane, block)

Out-of-place updates cause invalidation

Invalidation causes garbage collection.

Block 0 Block 1

Plane

Page 0

Page 1

Page 2

Page 0

Page 1

Page 2

Writes in SSD

10

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Free Free Free

Block 1

Writes in SSD

11

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!

Writes in SSD

12

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

13

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

14

A

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

B C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

15

A

A’

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free Free

Block 1

Update

A, B, C, D

Writes in SSD

16

A

A’

B

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

C

D E F

G H

Free Free

Block 1

Update

A, B, C, D

Writes in SSD

17

A

A’

B

B’

Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’

B’ C’ D’

Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

Writes in SSD

18

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

Writes in SSD

19

What if there is no space?

…Block 0

E F

G H A’

B’ C’ D’

A B C

D

M’ N’ O’

P’ Q’ R’

Block N

M N O

P Q R

Writes in SSD

20

What if there is no space?

Garbage Collection!

…

What if there is no space?

Garbage Collection!
Block 0

Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased Erased Erased

Erased

Erased Erased Erased

Erased Erased Erased

Block N

Erased Erased Erased

Erased Erased Erased

Writes in SSD

21

Valid pages:

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Writes in SSD

22

What if there is no space?

Garbage Collection!

Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

Higher average update cost (due to GC) à Read/Write asymmetry

Writes in SSD

23

What if there is no space?

Garbage Collection!

24

HDD vs SSD

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry

Concurrency

HDD SSD

Measuring Asymmetry/Concurrency (With FS)

25

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

26

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

27

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

28

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

29

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

30

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

31

33x

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

32

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

33

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

34

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

35

For 4K random read,

Asymmetry: 2.8

Concurrency: 80

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

36

For 8K random read,

Asymmetry: 1.9

Concurrency: 40

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

37

For 8K random write,

Asymmetry: 1.9

Concurrency: 7

Device
PCIe SSD - P4510 (1TB)

Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

Threads

×103

2.8x

1.9x

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

0

300

600

0 100 200 300

IO
PS

Threads

4K Random Read 4K Random Write 8K Random Read 8K Random Write

Asymmetry and

concurrency depends

on request type and

access granularity.

38

Device
PCIe SSD - P4510 (1TB)

Empirical Asymmetry and Concurrency

39

4KB 8KB

Devices 𝛼 kr kw 𝛼 kr kw
Optane SSD 1.1 6 5 1.0 4 4
PCIe SSD (with FS) 2.8 80 8 2.0 40 7
PCIe SSD (w/o FS) 3.0 16 6 3.0 15 4
SATA SSD 1.5 25 9 1.3 21 5
Virtual SSD 2.0 >11 >19 1.9 >6 >10

41

Which module of a DBMS interacts with

storage the most?

42

Bufferpool Manager

43

Buffer Pool Page Eviction Algorithm

Classical
Request(page);
If (page in BP) -> return page
Else

// Miss! Bring the page from Disk
If BP not full -> Read requested page from Disk
Else

- Select a page for eviction based on replacement policy
- If the candidate page is dirty, write to disk
- Drop the candidate page from BP
- Read requested page

[if the request is a write, an in-memory update takes place that
set the dirty bit as well]

44

Free frame

Disk page

Disk Main Memory

DB
Buffer Pool

Dirty page

Buffer Pool Manager

45

Free frame

Disk page

Disk Main Memory

DB
Buffer Pool

Page request comes

Dirty page

Traditional Buffer Pool Manager

46

Free frame

Disk page

DB
Buffer Pool

Page request comes

If page is not in BP,
fetch from diskDisk Main Memory

Dirty page

Traditional Buffer Pool Manager

47

DB

Page request comes

If BP is full, one page is selected for eviction
based on page replacement policy

Disk page

Buffer Pool

Dirty page

Traditional Buffer Pool Manager

48

DB

Page request comes

If BP is full, one page is selected for eviction
based on page replacement policy

Disk page

Buffer Pool

Dirty page

Traditional Buffer Pool Manager

49

Disk page

DB
Buffer Pool

Page request comes

If the page is dirty, it is written back to disk

Dirty page

Traditional Buffer Pool Manager

50

Disk page

DB
Buffer Pool

Page request comes

If the page is dirty, it is written back to disk
and evicted

Dirty page

Traditional Buffer Pool Manager

51

Disk page

DB
Buffer Pool

Page request comes

The requested page is fetched in its place
(exchanging one write for a read)

Dirty page

Traditional Buffer Pool Manager

52

Popular Page Replacement Algorithms

LRU (Most Popular)

LFU, FIFO (Simple)

Clock Sweep (Commercial)

CFLRU

LRU-WSR
Flash-Friendly

53

CFLRU

Clean-first
region

Working
region

54

D

Clean-first
region

Working
region

p1

CFLRU

55

D C D D C D

Clean-first
region

Working
region

p6 p5 p4 p3 p2 p1
Candidate for eviction

C D C D D D
p7 p6 p5 p4 p3 p1

Clean-first
region

Working
region

After Eviction: Next Candidate for eviction

CFLRU

LRU pageMRU page

56

D
1

C D
0

D
0

C D
0

p6 p5 p4 p3 p2 p1

Cold flag

Cold flag NOT set!
This is be moved to front
setting the cold flag

D
1

D
1

C D
0

D
0

C
p1 p6 p5 p4 p3 p2

Cold flag

Candidate for eviction

After Eviction:

C D
1

D
1

C D
0

D
0

p7 p1 p6 p5 p4 p3

Cold flag

LRU-WSR

57

D
1

C D
0

D
0

C D
1

p6 p5 p4 p3 p2 p1

Cold flag

Cold flag set!
Candidate for eviction

After Eviction:

C D
1

C D
0

D
0

C
p7 p6 p5 p4 p3 p2

Cold flag

LRU-WSR

58

Disk page

DB
Buffer Pool

All these policies exchange one read for one write!

Dirty page

Is this Fair?

The Challenge

59

• (Challenge 1) With write asymmetry,

it is NOT fair to exchange one write

for one read.

The Challenge

LRU
Clock
Sweep

FIFO
NRU

Second
Chance

2Q

ARC

Asymmetry = 1 𝛼
Co

nc
ur

re
nc

y
=

1

k

60

• (Challenge 1) With write asymmetry,

it is NOT fair to exchange one write

for one read.

The Challenge

LRU
Clock
Sweep

FIFO
NRU

Second
Chance

2Q

ARC

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU

Optimizing for
Asymmetry

Asymmetry = 1 𝛼
Co

nc
ur

re
nc

y
=

1

k

61

• (Challenge 1) With write asymmetry,

it is NOT fair to exchange one write

for one read.

• (Challenge 2) Bufferpool Managers

do NOT expressly utilize the device

concurrency.

The Challenge

LRU
Clock
Sweep

FIFO
NRU

Second
Chance

2Q

ARC

Prefetching Write-back
Batching

SSD Controller
Optimization

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU

Optimizing for
Asymmetry

O
pt

im
iz

in
g

fo
r

Co
nc

ur
re

nc
y

Asymmetry = 1 𝛼
Co

nc
ur

re
nc

y
=

1

k ???

62

• (Challenge 1) With write asymmetry,

it is NOT fair to exchange one write

for one read.

• (Challenge 2) Bufferpool Managers

do NOT expressly utilize the device

concurrency.

The Challenge

LRU
Clock
Sweep

FIFO
NRU

Second
Chance

2Q

ARC

Prefetching Write-back
Batching

SSD Controller
Optimization

CFLRU

LRU-WSR

CFLRU/C
CFLRU/E

DL-CFLRU/E

CCF-LRU

ACE
design

Optimizing for
Asymmetry

O
pt

im
iz

in
g

fo
r

Co
nc

ur
re

nc
y

Optim
izin

g for

Both asy
m. &

 co
n.

Asymmetry = 1 𝛼
Co

nc
ur

re
nc

y
=

1

k

63

Bufferpool Design Space

64

Bufferpool Manager

-LRU
-NRU
-Clock
-Second Chance

- FIFO
- 2Q
- ARC

-CFLRU
-LRU-WSR
-CCF-LRU

-CFLRU/C
-CFLRU/E
-DL-CFLRU/E

Eviction Policy

Which page to evict? When to prefetch?
-Prefetch on miss

Which pages?
-Sequential/
-History-based

How many pages?
-1 or x pages
How to prefetch?
-Sequentially

Read-ahead Policy

Flash-
friendly
policies

Optional

Classical Bufferpool Design Space

65

Bufferpool Design Space

Bufferpool Manager

-LRU
-NRU
-Clock
-Second Chance

- FIFO
- 2Q
- ARC

-CFLRU
-LRU-WSR
-CCF-LRU

-CFLRU/C
-CFLRU/E
-DL-CFLRU/E

Eviction Policy
How many pages to evict?
Which pages to evict?

When to prefetch?
-Prefetch on miss

Which pages?
-Sequential
-History-based

How many pages?
-1 or x pages
How to prefetch?
-Seq./Concurrently

Read-ahead Policy
How many pages to flush?
-1 page
-n pages(exploit kw)

Write-back Policy

Which pages to flush?

How to write?Flash-
friendly
policies

-dirty pages following
replacement algo.

- one-at-a-time vs.
concurrently

Red indicates new
design elements

Optional

66

Asymmetry/Concurrency-Aware
(ACE) Bufferpool Manager

67

ACE Bufferpool Manager

Use device’s properties

68

Flush multiple dirty pages concurrently

Evict 1 page (to not disrupt locality)
or

Evict multiple pages (if we trust prefetching)

Goal: 1 read vs. a concurrent write backs
(more if concurrency permits)

ACE Bufferpool Manager

69

ACE Bufferpool Manager
Buffer Pool

p1 p2 p4 p9
p5 p12 p18 p10
p13 p7 p24 p21

ReaderEvictor

p2 p1 p5 p9…

Candidates

Seq. Stream
Prefetcher

History-based
Prefetcher

Writer

Concurrent
Device-aware

Writing

Concurrently write
back n dirty pages

Parallelly prefetch
x pages

p

p

Dirty page

Clean page

with PF

w/o PF

any page
replacement policy

70

Buffer Pool Page Eviction Algorithm

Request(page pR);
If (page in BP) -> return page
Else

// Miss! Bring the page from Disk
If BP not full -> Read requested page from Disk
Else

- Select a page pE for eviction (?) based on replacement policy
- …

72

Module: Writer
Buffer Pool

p1 p2 p4 p9
p5 p12 p18 p10
p13 p7 p24 p21

ReaderEvictor

p2 p1 p5 p9…

Candidates

Seq. Stream
Prefetcher

History-based
Prefetcher

Writer

Concurrent
Device-aware

Writing

Concurrently write
back n dirty pages

Parallelly prefetch
x pages

p

p

Dirty page

Clean page

Concurrent write-back

• If pE is dirty, then write n dirty pages concurrently

where, n = device’s write concurrency (kw)

• If pE is clean, skip to Evictor

The n pages are selected following the order

of the underlying page replacement algorithm

73

Module: Evictor
Buffer Pool

p1 p2 p4 p9
p5 p12 p18 p10
p13 p7 p24 p21

ReaderEvictor

p2 p1 p5 p9…

Candidates

Seq. Stream
Prefetcher

History-based
Prefetcher

Writer

Concurrent
Device-aware

Writing

Concurrently write
back n dirty pages

Parallelly prefetch
x pages

p

p

Dirty page

Clean page

Piggy-backs on the underlying replacement algorithm

If prefetching is not enabled

ü Evict 1 page (following the replacement algorithm)

If prefetching is enabled & pE is clean

ü Evict 1 page

If prefetching is enabled & pE is dirty

ü Evict n pages

74

Module: Reader

Buffer Pool
p1 p2 p4 p9
p5 p12 p18 p10
p13 p7 p24 p21

ReaderEvictor

p2 p1 p5 p9…

Candidates

Seq. Stream
Prefetcher

History-based
Prefetcher

Writer

Concurrent
Device-aware

Writing

Concurrently write
back n dirty pages

Parallelly prefetch
x pages

p

p

Dirty page

Clean page

Fetch the requested page pE

If prefetching is enabled (n pages were evicted)

ü Prefetch concurrently n-1 pages

• Sequential prefetcher

• History-based prefetcher

76

6 2 3 5 7 4 9B

Let’s assume: a = 3, LRU is the baseline
replacement policy & red indicates dirty page

Next, a read request for page 8 arrives

Let’s Take a Look at an Example

LRU pageMRU page

77

Candidate for eviction

Since candidate page is
clean, we simply evict it

After Eviction:

Next, a write request for page 1 arrives

Let’s Take a Look at an Example

6 2 3 5 7 4 9B

6 2 3 5 7 4B

MRU

8 6 2 3 5 7 4B

78

Candidate

Let’s Take a Look at an Example (a = 3)

8 6 2 3 5 7 4B

8 6 2 3 5 7B

1 8 6 2 3 5 7B

Eviction:
evict candidate (4)

LRU

79

LRU

Eviction:

Candidate

ACE LRU(w/o PF)

Let’s Take a Look at an Example (a = 3)

8 6 2 3 5 7 4B 8 6 2 3 5 7 4B

Eviction:
8 6 2 3 5 7B
4 is evicted

8 6 2 3 5 7B

1 8 6 2 3 5 7B

evict candidate (4)
Write-back: 2,5,4 concurrently

written

1 8 6 2 3 5 7B

Candidate

80

LRU

Eviction:

Candidate

ACE LRU(w/o PF)

Let’s Take a Look at an Example (a = 3)

8 6 2 3 5 7 4B 8 6 2 3 5 7 4B

Eviction:
8 6 2 3 5 7B
4 is evicted

8 6 2 3 5 7B

1 8 6 2 3 5 7B

Candidate

evict candidate (4)
Write-back: 2,5,4 concurrently

written

1 8 6 2 3 5 7B

8 6 2 3 5 7 4B

8 6 2 3 9 0B

Eviction Window

Eviction: 5,7,4 is evicted
Write-back: 2,5,4 concurrently

Prefetch: 9,0 (as LRU)

1 8 6 2 3 9 0B

ACE LRU(w/ PF)

81

Evaluation

82

Experimental Evaluation

• Implementation in PostgreSQL

• Clock, LRU, CFLRU, LRU-WSR vs. their ACE counterparts

• Evaluation on 4 synthesized traces and TPC-C benchmark

• 3 storage devices: NVMe SSD, Regular SSD, Virtual SSD
⍺ = 3, kw = 8 ⍺ = 1.5, kw = 8 ⍺ = 2, kw > 19

83

Experimental Evaluation

Mixed Skewed Trace

ACE improves runtime by >20%

(for a mixed skewed workload)

Negligible increase in buffer miss (<0.004%)

Device: NVMe SSD

⍺ = 3, kw = 8

 0
 100
 200
 300
 400
 500
 600
 700

Clock LRU CFLRU LRUW

La
te

nc
y

(s)

SOA ACE wo pf ACE w pf

84

Experimental Evaluation

 0
 100
 200
 300
 400
 500
 600
 700

Clock LRU CFLRU LRUW

La
te

nc
y

(s)

SOA ACE wo pf ACE w pf

Write-intensive Skewed Trace

Higher gain (>30%) for write-intensive

workloads because of smart batching

Device: NVMe SSD

⍺ = 3, kw = 8

85

Experimental Evaluation

 0
 100
 200
 300
 400
 500
 600
 700

Clock LRU CFLRU LRUW

La
te

nc
y

(s)

SOA ACE wo pf ACE w pf

Read-intensive Skewed Trace

Read-intensive workloads also

have substantial gain (5-15%)

Benefits comes mostly through

prefetching

Device: NVMe SSD

⍺ = 3, kw = 8

86

Experimental Evaluation

 0
 100
 200
 300
 400
 500
 600
 700

Clock LRU CFLRU LRUW

La
te

nc
y

(s)

SOA ACE wo pf ACE w pf

Mixed Uniform Trace

Device: NVMe SSD

⍺ = 3, kw = 8

The benefits remain significant

(~10%) for uniform workloads

87

Experimental Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

MS WIS RIS MU

Sp
ee

du
p

Clock+ACE
LRU+ACE

CFLRU+ACE
LRUW+ACE

Device: Regular SSD

⍺ = 1.5, kw = 8

Even for devices with asymmetry 1.5,

concurrency leads to up to 20% benefit

88

Experimental Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

MS WIS RIS MU

Sp
ee

du
p

Clock+ACE
LRU+ACE

CFLRU+ACE
LRUW+ACE

Device: Virtual SSD

⍺ = 2, kw > 19

The benefits remain for virtual SSDs

that we cannot fully benchmark

89

Experimental Evaluation

0.9

1.1

1.3

1.5

1.7

1.9

0 1 2 3 4 5 6 7 8 9 10 11

Sp
ee

du
p

Read/Write Ratio

LRU CFLRU LRU-WSR Clock

0:100 10:90 20:80 30:70 40:60 50:50 60:40 70:30 80:20 90:10 100:0

For write heavy workloads, gain

of ACE can be as high as 1.75x

Device: NVMe SSD

⍺ = 3, kw = 8

90

Experimental Evaluation

0.9

1.1

1.3

1.5

0.9 1.8 3.6 7.2

Sp
ee

du
p

Bufferpool size (%)

LRU CFLRU LRUW Clock

2 4 6 8 10 20 50 100

ACE performs particularly well

under memory pressure

Device: NVMe SSD

⍺ = 3, kw = 8

91

Experimental Evaluation

0.9

1

1.1

1.2

1.3

1.4

0 2 4 6 8 10 12 14 16

Sp
ee
du

p

n

LRU CFLRU LRUW Clock

There is an optimal
concurrency for each device.

Device: NVMe SSD

⍺ = 3, kw = 8

92

Experimental Evaluation (TPC-C)

93

Experimental Evaluation (TPC-C)

TPC-C consists of 5 transactions

NewOrder (45%) R/W Mix

Payment (43%) R/W Mix

OrderStatus (4%) R-only

StockLevel (4%) R-only

Delivery (4%) W-heavy

94

Experimental Evaluation (TPC-C)

 0

 0.5

 1

 1.5

 2

LRU CFLRU LRUW Clock

Sp
ee

du
p

Read-Write
Read-Write

Read-Write
Read-Only

Read-Only
Write-Only

M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el M
ix

N
ew

 O
rd

er
Pa

ym
en

t
O

rd
er

St
at

us
St

oc
kL

ev
el

D
el

iv
er

y

D
el

iv
er

y

D
el

iv
er

y

D
el

iv
er

y

Make asymmetry and concurrency part of algorithm design

… not simply an engineering optimization

Build algorithms/data structures for storage devices
with asymmetry 𝛼 and concurrency 𝑘

index structures graph traversal algorithms

Conclusion

95

class 18

Asymmetry & Concurrency Aware Storage
Management

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

