
class 11

Adaptive Radix Trees

Prof. Manos Athanassoulis 

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/


Indexing is key to database performance

B+ Trees and LSM-Trees dominate disk-based indexes

Hash indexes and optimized search trees are common for in-memory
BUT

Hash indexes are unordered (no range queries) 
Search trees are slower than Hash indexes for point queries

can we build a better compromise?



Increasing data size

Search trees size (tree height and width) grows with data size!

So, it quickly does not fit in cache or in memory

Why is that problem?



Reminder: Memory Wall

CPU

on-chip cache

on-board cache

main memory

flash storage

disks flash

fa
st

er
ch

ea
pe

r/
la

rg
er



HDD / Shingled HDD

SSD (Flash)

Main Memory

L3

L2

L1

~2ms

~100μs

~100ns

~3ns

<1ns

~10ns

4

page size 
~4KB

block size
(cacheline) 64B

Bigger 
Cheaper
Slower

Faster
Smaller
More 
expensive

64KB

256KB

<20MB

~100GB

~500GB

~10TB



In-Memory Search Trees: T-TreesT-tree
• Sorted array split into 

balanced BST with fat nodes 
(~ cache lines) 

• Better than RB/AVL 

• Updates faster, but still 
expensive 

• Similar to BS: useless data 
movement to CPU (useful only 
min and max) 

• Developed in mid 80s and 
still(!) used in many DBMS

Fat nodes (cacheline size) with two children

Developed in the 80s (still used in some systems!)

Unpredictable pointer chasing

Memory access latency is not uniform



Are B+ Trees good for in-memory execution?

2* 3*

Root
17

21 24

14* 16* 19* 20* 21* 22* 23* 24* 27* 29*

135

7*5* 8*

Designed for disks!

Node size is equal to page size, the goal is to minimize #random accesses of pages (wide fanout)

How to make it memory-friendly?



Cache-sensitive B+ TreesCSB+ tree
Every level is physically stored contiguously

Good cache utilization!

Poor updates – needs logic to balance

Tree height depends on #items inserted

why?

similar to …?



Can we do better for an in-memory search tree?

Maintain order

Maintain few random access

Maintain good cache utilization

Maintain low space complexity

Cheap updates

tree

low height

access cachelines

less logic, avoid rebalancing or splitting



Enter Tries
Also known as Radix Trees, Prefix Trees, Digital Trees 



Trie, Radix Tree, Prefix Tree, Digital Tree Trie, Radix Tree, Prefix Tree, Digital Tree

�

� �

�

�����	


�����	�

�����	�


���	�����

� ���

I Tree height depends on key length k, but not on tree size n
I No rebalancing required

I Lexicographic order

3 / 16

Tree height depends on key length k

Not on tree (data) size

No rebalancing needed!

Automatically get lexicographical order



Tries on integers (in binary format)Radix Tree

Implicit keys Space complexity

Every node stores a part of the binary representation (“radix”) of the key

Implicit Keys

Significant space savings

Should all nodes use the same number of radix bits?



Adaptive Radix Tree SpanRadix Tree Span

I For binary keys, the fanout can be configured.

I At each node, s bits (“span”) of the key are used.

I Each inner node is simply an array of 2
s

pointers.

s=3 s=1

0 10 1 2 3 4 5 6 7

4 / 16

For binary representations of keys, the fanout can be configured!

Each node uses s bits (“span”) of the radix of the key

Hence, an inner node is an array of 2s pointers (with equal number of children)



Tree Size vs. Span

k bit keys & span=s à k/s inner levels & 2s pointers in each node
let’s assume 32 bit keys
span=1 à 32 inner levels & 2 pointers in each node
span=2 à 16 inner levels & 4 pointers in each node
span=4 à 8 inner levels & 16 pointers in each node
span=8 à 4 inner levels & 256 pointers in each node

tall and thin tree

short and fat tree



Height vs. Size Tradeoff

Height vs. Space Tradeo�

I Large s: Small height (fast), large space consumption

I Small s: Large height (slow), small space consumption

I ART allows to escape this tradeo�

s=1

s=2

s=3
GPT (s=4)

LRT (s=6)
s=12s=14 s=16s=8

s=32ARTARTARTARTARTARTARTARTARTART1

8

16

24

32

32MB 128MB 512MB 2GB 8GB 32GB
space consumption (log scale)

tre
e 

he
ig

ht

5 / 16

Large s: 
small height (fast)

BUT
high space consumption

Small s: 
large height (slow)

BUT
low space consumption

ART manages to avoid this tradeoff

How?



Adaptively Sized Nodes

Main Idea: Adaptively Sized Nodes

I s = 8: each inner node maps 1 byte of the key to the next

child node

I Di�erent node sizes depending on number of children

(variable fanout)

6 / 16

s = 8: each inner node corresponds 1 byte of the key

however: different node sizes depending on the actual number of children

a classical radix tree with fixed-side array nodes

design innovation: variable fanout

a radix tree with adaptively-sized nodes



Remember: what is the goal?Radix Tree

Implicit keys Space complexity

to break a 32-bit key in 4 bytes across 4 levels and reduce the size of the nodes!



More on adaptive nodesInternal Data Structures
I We use 4 data structures with di�erent capacities and

dynamically chose the best one for each node

0 2 3

key child pointer

0 2 3 ……

key child pointer

0 1 2
… …

child index child pointer

3 255

0 1 2
…

3 255

child pointer

4 5 6

b c

b ca

a

d

d

227

b ca d

d

a cb

0 1 2 3 0 1 2 3

0 1 2 0 1 2 1515

47210

57

Node4

Node16

Node48

Node256

7 / 16

4 node sizes, dynamic decision

Adaptive nodes
N256 implicit keys 

N4 & N16 explicit keys 

N48 indirection index 

Why 16?

Adaptive nodes
N256 implicit keys 

N4 & N16 explicit keys 

N48 indirection index 

Why 16?

Adaptive nodes
N256 implicit keys 

N4 & N16 explicit keys 

N48 indirection index 

Why 16?
explicit keys
both Node4 and Node16 
use arrays of size 16

indirection index
with implicit keys

implicit keys



ART Traversal
Traversal

13 129130

key child pointer

3 8 9 ……

key child pointer

Node4

Node16

Node48

Node256

0 1 2
… …

child index child pointer

3 255

0 1 2
…

3 255

child pointer

4 5 6

255

0 1 2 3 0 1 2 3

0 1 2 0 1 2 1515

47210

TID TID TID TIDTID TID

2 913 255

byte representation

+218237439 00001101 00000010 00001001 11111111

integer key bit representation (32 bit, unsigned)

8 / 16



Optimizations: Remove one-way nodes
Height Optimizations for Long Keys

I Remove all one-way nodes

�

�

� �

�

�

�

��	

��
������


�������
�������

�������
���
��������������

������������
�����
��������������������

11 / 16

Height Optimizations for Long Keys
I Remove all one-way nodes

BA

R Z

F

12 / 16



Supporting various data types

Native support for:
String
Integers (binary representation)

Require transformations for: 
floats, Unicode, signed, null, composite

when?



Evaluation
Lookup Performance (4 Byte Keys)

0

5

10

15

20

ART
(dense)

ART
(sparse)

GPT
(dense)

GPT
(sparse)

RB CSB kary FAST HT

M
 lo

ok
up

s/
se

co
nd

I GPT: Generalized Prefix Tree, Boehm et al., BTW 2011
I RB: Red-Black Tree
I CSB: Cache-Sensitive B+Tree, Rao and Ross, SIGMOD 2000
I kary: K-ary Search Tree, Schlegel et at., Damon 2009
I FAST: Fast Architecture Sensitive Tree, Kim et al., SIGMOD 2010
I HT: Chained Hash Table

9 / 16

Lookup performance (4B keys)

Insert Performance

I 16M entries, 4 byte keys

0

5

10

15

ART
(dense)

ART
(sparse)

ART
bulk

GPT
(dense)

GPT
(sparse)

RB CSB
bulk

HT

M
 in

se
rts

/s
ec

on
d

10 / 16

Insert performance (4B keys)



Cache Efficiency



Skewed Search & Impact of Cache Size

ART: adjacent items are in the same node/subtree
HT: adjacent items are in different buckets

ART: no evictions, fewer misses overall
HT: data is randomly distributed more misses



Tree Height in TPCC

E�ect of Height Optimizations on TPC-C indices

I Without the height optimizations the height is the length of

the keys in bytes (too much for long keys)

0

10

20

30

40

tre
e 

he
ig

ht

default
+lazy expansion
+path compression

int int,int,varchar(16),varchar(16),TID 

13 / 16

Without the height optimization the height can be the length of the keys à can be prohibitively high

why? what is the height of a B+ Tree?



Space Efficiency for TPCC



Conclusions

Radix Trees can be used as a generalized index
for multiple data types
space efficient
with excellent performance

thus, combining:
range query support of search trees
point lookup efficiency of hash indexes



class 11

Adaptive Radix Trees

Prof. Manos Athanassoulis 

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

