
The design space of data 
structures

Prof. Manos Athanassoulis 

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/


data structures

b+ trees
hash tables

zonemaps

radix trees

bitmap indexes

are in the core of:

database systems

file systems

operating systems

machine learning systems

systems for data science

how to decide which one to use?
workload (access patterns)

hardware (memory/storage/network/compute)

current focus

next



how to decide how to design a data structure?

break it down to design dimensions



how to break down the design in independent dimensions?

how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

buffer

batching via buffering



how to physically organize the data?

how to search through the data?

multiple levels of nested organization?

can I accelerate search through metadata?

how to update or add new data?

how to exploit additional memory/storage?

should the above decisions be applied eagerly or lazily?

how to break down the design in independent dimensions?

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

adaptivity

batching via buffering



data structure designs navigate a three-way tradeoff

Reads

Updates
Memory



The RUM Conjecture

every access method has a (quantifiable)
• read overhead
• update overhead
• memory overhead

the three of which form a competing triangle

Read

Update Memorywe can optimize for two of 
the overheads at the 
expense of the third

13

max

min

minmin



what would be an optimal read behavior?

X data

read(X)

oracle

read(x) accesses only the bytes of object X

how free can an oracle be?

14

R

U M

?

max

min

minmin



what would be an optimal read behavior?

X data

read(X)

oracle

read(x) accesses only the bytes of object X

how free can an oracle be?

15

R

U M

? ?

max

min

minmin



what would be an optimal read behavior?

16

1 4 5 82 17

insert 2insert 17delete 8

minimum read overhead

bound update overhead

unbounded memory overhead

update 4 -> 3

3



X

what would be an optimal update behavior?

data

always append, and on update invalidate 

17

R

U M

?

?

A BX X

Always scan

update (X) changes the minimal number of bytes

more data?

C D

what about reads?
max

min

minmin



X

what would be an optimal update behavior?

data

always append, and invalidate on update

18

R

U M

?

?

A BX X

Always scan

update (X) changes the minimal number of bytes

C D

higher read and memory overhead

max

min

minmin



what would be an optimal memory overhead?

X data

scan and find

scan and in-place updates

19

R

U M
?

?

no metadata whatsoever, would result in the smallest memory footprint

do we need to reach the optimal(s)?

No!
max

min

minmin



are there only three overheads?

Reads

Updates
Memory



are there only three overheads?

Read

Update Memory



are there only three overheads?

Point Read Range Read (short/long/full scan)

Update

MemoryInsert

Delete

PyRUMID overheads



data structures design dimensions and their values

global data organization

global search algorithm

metadata for searching

local data organization & search algorithm

modification policy

batching via buffering

adaptivity



unsorted

sorted

logging

key-level partition-level

range

radix

hash partitioning

partitioning logging

global data organization

1-5 6-10

001 010 011

11-15

h(x)=1 h(x)=2 h(x)=3

epoch 1 epoch 2 epoch 3

another decision to be made for each partition



global search algorithm

SCAN

binary search

direct addressing

data-driven search

any data organization

radix/range

radix

more suited for long range queries

point or range queries

more suited for point queries

better match the data
example: interpolation search

data organizations that can use it? comments

radix/range



Binary vs interpolation search

1 2 3 4 5 6 7 8 9 10 11

mid = low + (high - low) / 2 = 5
low = 0; high = 10;

0 1 2 3 4 5 6 7 8 9 10

search for x=5

val[mid] = val[5] = 6; so x < val[mid] è high = mid - 1 = 4

mid = low + (high - low) / 2 = 2
low = 0; high = 4;

val[mid] = val[2] = 3; so x > val[mid] è low = mid + 1 = 3

mid = low + (high - low) / 2 = 3.5 (rounding to 4)
low = 3; high = 4;

val[mid] = val[4] = 5; so x == val[mid] è success!!



Binary vs interpolation search

1 2 3 4 5 6 7 8 9 10 11

mid = low + ((x - val[low]) * (high - low) / (val[high] - val[low])) = (5-1)*(10-0)/(11-1) = 4
low = 0; high = 10;

0 1 2 3 4 5 6 7 8 9 10

search for x=5

val[mid] = val[4] = 5 è success!

does it always need 1 hop?



Binary vs interpolation search

1 2 3 4 5 6 7 8 9 11 15

mid = low + ((x - val[low]) * (high - low) / (val[high] - val[low])) = (5-1)*(10-0)/(15-1) = (rounding to) 3
low = 0; high = 10;

0 1 2 3 4 5 6 7 8 9 10

search for x=5

val[mid] = val[3] = 4 ; so x > val[mid] è low = mid + 1 = 4

mid = low + ((x - val[low]) * (high - low) / (val[high] - val[low])) = 4 + (5-5)*(10-4)/(15-5) = 4
low = 4; high = 10;

val[mid] = val[4] = 5 è success!

still better than binary!
works well with uniform distribution



global search using metadata (indexing)

SCAN

binary search

direct addressing

data-driven search

every search algorithm can be materialized and further optimized using indexing

Zonemaps Bloom Filters Imprints

k-ary
tree b+ tree

Hash Index

learned 
indexes



Imprints

Column AZ1: [32,72] Z2: [13,45] Z3: [1,10] Z4: [21,99] Z5: [28,35] Z6: [5,12]

similar to zonemaps

Column AC1: [32,72] C2: [13,45] C3: [1,10] C4: [21,99] C5: [28,35] C6: [5,12]

storing a simplified histogram for each block

why? it can capture better range queries and avoid useless overlap



unsorted

sorted

logging

local data organization
decision per partition

hashing

cracking

gradually from unsorted towards sorted

SCAN
binary search

direct addressing
data-driven search

local search algorithms



in-place

modification policy (updates/deletes/inserts)

out-of-place

every update needs to find the “correct” position

every read needs to search all data

deferred in-place will eventually merge



how to break down popular designs 
to those design decisions?



b+ trees

global data organization

local data organization

local search algorithm

modification policy

range partitioning

search tree

sorted

binary search / scan

in-place

range

tree

Workload?

point and range queries, modifications, and some scans

global searching (algorithm or index)



insert optimized b+ trees

global data organization

global searching (algorithm or index)

local data organization

local search algorithm

modification policy

range partitioning

search tree

logging

binary search / scan

deferred in-place

range

treeWorkload?

increased number of modifications



bounded disorder access method

global data organization

local data organization

local search algorithm

modification policy

range partitioning

search tree

hashing

hashing

in-place

range

tree

Workload?

mixed workload, without short range queries

global searching (algorithm or index)



static hashing

global data organization

local data organization

local search algorithm

modification policy

hash partitioning

direct addressing (hashing)

logging

scan

in-place

Workload?

point queries and modifications

global searching (algorithm or index)



scans with zonemaps

global data organization

local data organization

local search algorithm

modification policy

none / logging

scan (with filters)

n/a

n/a

in-place

Workload?

long range queries and modifications

global searching (algorithm or index)



lsm-trees

global data organization

local data organization

local search algorithm

modification policy

partitioned logging

filter indexing

sorted

binary / data-driven search

out-of-place

Workload?

modification-heavy with point and range queries

global searching (algorithm or index)



lsm-hash

global data organization

local data organization

local search algorithm

modification policy

partitioned logging

filter indexing

hashing

hashing

out-of-place

Workload?

modification-heavy with point queries and no range queries

global searching (algorithm or index)



The design space of data 
structures

Prof. Manos Athanassoulis 

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

