
 

CAS CS 561: Data Systems Architectures 
Data-intensive Systems and Computing Lab 
Department of Computer Science 
College of Arts and Sciences, Boston University 
http://bu-disc.github.io/CS561/    

 
 

CS561 Spring 2021 – Project 0 
Title: Implementation of a simple Zone Map 

Background: A zone map is like a coarse index that maintains minimum/maximum 
value ranges of one or more specified columns over contiguous sets of data blocks or 
rows, called zones of a table [1]. A zone map helps in data pruning of both single keys 
and a range of keys. The queried key/range of keys is first checked with the min/max 
values of every block/zone before scanning within the block, thereby reducing query 
latency. 
Simple sorted array/vector: 

1 2 3 4 5 6 … … … … 
 
      
Zonemap:  
1,2,…6,7…,10 11,12,…15,…20 21,22,…25,…30 31,32,…35,…40 … 

 
 
 
Objective: The objective of the project is to implement a simple zone map and 
evaluate its performance on both point and range queries. The workflow for this is as 
the following. 
(a) Implement a zone map (vanilla implementation). Develop by cloning the API 

available to you at: https://github.com/BU-DiSC/cs561_templatezonemaps. This 
API contains a header file with basic functionality definitions for a zone map. You 
are free to modify certain components to improve performance. Note that you are 
expected to build a more extensive testing infrastructure. 

(b) A simple query generator (point queries) is included in main.cpp file that tests the 
entire domain along with a few non-existing queries. For range queries, divide the 
entire domain into 4 batches of 10% elements each (10-20, 30-40, 60-70, 80-90). 
Perform a range query on each of the batches and report the average over all the 
results. For testing purposes, a workload generator is also included, that generates 
integers in a given domain with desirable noise.  

(c) Test the zone map with different workloads for both point and range queries. Use 
the number of elements in the domain to be 1 Million and 5 Million integers. For 
noise%, generate workloads of 0%, 5% and 25%. Use a standard 5% for the window 
threshold. The execution time outputs must be written either onto the terminal or 
to a log file.  
Note: Noise(%) is the percentage of total elements out of order. 
WindowThreshold(%) is the window within which an out of order element can 
occur from its original position. 
 

Deliverables: Zone map implementation code that runs the test cases. It is required 
to have comments within the implementation, that explains various design decisions.  
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