
Concurrency-Aware Tree/Graph
Traversal Algorithms
 Randy Collado, Taishan Chen, Yizheng Xie

Background

● Parallelism in data storage
○ Multiple drive: Distributed, RAID
○ Single drive: Solid-State Disk (SSD)

● SSD has internal concurrency
○ Can handle multiple requests simultaneously
○ Serial operations cannot achieve best performance

● Parallel algorithm for data
○ Tree/Graph structure widely used in data and file system
○ Traversal & Searching Algorithms

Coding for SSDs – Part 5: Access Patterns and
System Optimizations, Emmanuel Goossaert

Algorithm - Serial BFS

Breadth-first Search

Layer by layer

Implement by a queue (FIFO)

Pop_front() and push_back() its all descendants

Parallel BFS

Nodes in one layer can be processed in parallel

Straightforward

Need to distinguish current layer and next layer

Frontier and Next Queue

Loop frontier in parallel, push descendants in next

Frontier = Next

Frontier

Next

Serial DFS

Depth-first Search

Use Stack (FILO)

Pop_back() and push_back()

More common in searching

Parallel DFS

Each processing relies on last result

Both operation are on stack top, have to wait

A strict order DFS cannot be paralleled efficiently

3 1 2 4

2 1 34

Unordered/Pseudo Parallel DFS: DFS for each thread

Not globally depth-first, but still prefer depth

Serial DFS:

Not parallel DFS:

PDFS:

Thread 1

Thread 2

Parallel DFS - cont.

How to distribute nodes to threads?
Keep all threads busy for most parallelism.

● Set a threshold size (fSize) for stack
● Each thread works on own stack
● When one thread’s stack is larger than threshold

○ Split into two part
○ Given one part to a new thread

We let the OpenMP automatically handle the scheduling.
For better performance, control scheduling and balancing.

Acar, Umut A., Arthur Charguéraud, and Mike Rainey. "A work-efficient
algorithm for parallel unordered depth-first search.", 2015.

Thread 1

Thread 2

Thread 3

Code

std::vector<int> frontier, next;
bool isFound = false;
while (!isFound && frontier.size() > 0):
 for offset in frontier:
 node = read_node(offset);
 if (node.key == key) isFound = true;
 if (isFound || node’s children count == 0)
 continue;
 next.insert(node.children);
 frontier = next;
 next.clear();

OpenMP: Compiler-level directives, no/minimum
changes on codes.

Serial and Parallel BFS:

std::vector<int> frontier, next;
bool isFound = false;
#pragma omp parallel
while (!isFound && frontier.size() > 0):
#pragma omp for nowait
 for offset in frontier:
 node = read_node(offset);
 if (node.key == key) isFound = true;
 if (isFound || node’s children count == 0)
 continue;
#pragma omp critical
 next.insert(node.children);
 frontier = next;
 next.clear();

Code

std::vector<int> frontier;
bool isFound = false;
frontier.push_back(0);
while (!frontier.empty()):
 node = read_node(frontier.back());
 if (node.key == key) isFound = true;
 frontier.pop_back();
 frontier.insert(node.children);
return isFound;

Serial and Parallel DFS:

std::vector<int> frontier;
bool isFound = false;
frontier.push_back(0);
#pragma omp taskgroup
while (!frontier.empty()):
 node = read_node(frontier.back());
 if (node.key == key) isFound = true;
 frontier.pop_back();
 frontier.insert(node.children);
 while (frontier.size() > fSize):
 frontier, frontier_new = frontier.split();
#pragma omp task shared(isFound)
 if (run(frontier_new)){
 isFound = true;
#pragma omp cancel taskgroup
 }
return isFound;We also implement IDDFS and some hybrid approach, see

code if interested.

Tree Structure

● Our testing was conducted on a randomized tree-like graph, with control over
its branching factor, the branching factor of the individual nodes, and the
number of values allowed per key

● This offers significant flexibility is studying configurations that are beneficial
for concurrent search performance

● This also allows us to test worst and best-case scenarios for our search
algorithms

File Structure
● Memory-mapped structs allow efficient byte-level access of all the data within each

node of tree

● Tree is serialized in BFS order, converting each node encountered into an S_Node, a
node format that allows for efficient concurrent access of a node and it’s children

● S_Node structs store the offsets of the children nodes in the file, making the file
compatible with both DFS and BFS-based search schemes1

● Low-level syscalls allow us to avoid OS intervention and get more accurate results vs.
Standard Library

1. Sussenguth, E. H. (1963). Use of tree structures for processing files. Communications of the
ACM, 6(5), 272–279. https://doi.org/10.1145/366552.366600

Serializer and Operators

● File is opened via the open(2) syscall (or CreateFileA on Windows) with the appropriate flags
(see Direct I/O)

○ The file descriptor is stored in the serializer object for reading from and writing to the file.
● Operators:

○ S_Node* readNode(): reads node at current fd position
○ S_Node* readNodefromOffset(size_t offset): reads node at position offset bytes forward

relative to start of file
○ void writeNodeWithOffset(size_t offset): writes node at position offset bytes forward

relative to start of file
○ void write_offset_metadata(): unused
○ void read_offset_metadata(): unused

struct S_Node {

int key;

int numChildren;

int payload[8];

int children[8];

}
__attribute((aligned(512)));

struct Node {

size_t numChildren;

size_t maxChildren;

size_t numValues;

size_t maxValues;

int values[8];

Node* children[8];

}

File I/O

No caching: Test concurrency of storage

Concurrent: I/O operations should not be serialized by OS somehow

No universal libs for now, have to use system calls.

● SSD device which supports concurrent I/O
● O_DIRECT, pread/pwrite (Linux)

○ Windows: FILE_FLAG_NO_BUFFERING, FILE_FLAG_OVERLAPPED, GetOverlappedResult()

● Read/write with offsets

Experiments - Direct I/O (Random Read)

~14.8X
What’s the bottleneck here?

● CPU - Context Switch

● I/O - Concurrency

Experimental Setting: 8-CPU

 8 16 32

Experiments - Tuning fSize (Target Key Not Exist)

32

20

16
14

12

Experimental Setting:

● Num of Nodes: 20000

● Branch Size: 8

● Target Key Not Exist

● 8 CPU

Experiments - Tuning fSize (Random Target Key)

Experimental Setting:

● Num of Nodes: 20000/50000/80000

● Branch Size: 2/4/8

● 20 Random Target Key + 1 Not Exist

● 8 CPU & 32 Threads

Experiments - Algorithm Efficiency Experimental Setting:

● 20 Random Target Key + 1 Not Exist

● 8 CPU & 32 Threads

Change Num of Nodes Change Branch Size

13.3 - 14.3X 7.5 - 12.8X 13.2 - 13.5X 8.2 - 12.8X

Future Works
● Algorithm

○ Better controls over scheduling and task stealing

○ Hybrid search, adjust parameters automatically

○ Extend algorithm to general graph structures

● Testing

○ More different workload

○ I/O Matrices like IOPS

Some Lessons!

● Try and choose way of implementation wisely.

○ Go: chan, operator(<-, ->)

○ C/C++: Std::thread, OpenMP

● Test in correct way.

○ All tests in memory before midterm, no performance gain, puzzled.

● Leave time for debugging!

○ especially for concurrent programming…

Thanks!

Reference

Acar, U. A., Charguéraud, A., & Rainey, M. (2015, November). A work-efficient algorithm for parallel
unordered depth-first search. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (pp. 1-12).

Korf, R. E. (1986). Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 28(1), 123. https://doi.org/10.1016/0004-3702(86)90035-4

Sussenguth, E. H. (1963). Use of tree structures for processing files. Communications of the ACM,
6(5), 272–279. https://doi.org/10.1145/366552.366600

https://doi.org/10.1016/0004-3702(86)90035-4

