
Implementation of LSM Tree
Richard Andreas

Su Jingyu
Yin Xingkun

Project Implementation
Components:

- Tuple
- FileMeta
- Level
- Run
- Buffer
- Bloom Filter
- Fence Pointer

Project Implementation
Data File Organization

Project Implementation
Supported Operations:

- Get
- Put
- Delete
- Range Scan
- Range Delete

Project Implementation
Other Features:

- Support persistence:

Persist buffer (Memtable) & metadata: Size of buffer, # of levels, size ratio, etc.

- Support Tiering and Leveling: decide when first build

Running Prototype
● ./main <outputFilePath>

● ./main <outputFilePath> <data file path>

Experiment Results
● Correctness in Operations

○ Generated Python and C++ Output files

Experiment Results
● Correctness in Operations

○ Generated Python and C++ Output files

● Latency

Experiment Results
● Correctness in Operations

○ Generated Python and C++ Output files

● Latency

Experiment Results
● Correctness in Operations

○ Generated Python and C++ Output files

● Latency

Challenges, Interesting thing
Locating bottle neck

- bloom filter

Merging code together

- plan ahead of time
- create APIs together

Timeline issue

- start working early

Further Works to Consider
● Improving Optimizations for Merging and Range Query Operations

● Adjusting Bloom Filter Optimizations

● Comparing with RocksDB and other industry level LSM Tree
implementation

