
CAS CS 561
Research Project Presentation
Range Deletes in LSM-Trees
Presented by: Guanzhang Li, Kaize Shi, Shirene Cao
Mentor: Subhadeep Sarkar

Problem Statement & Objectives

Logical deletes (invalidations) harm the read performance of LSM-tree

● The actual elimination of deleted data is deferred
● CPU overhead for managing the range-delete map
● Read amplification (number of disk-reads per query)
● Cost of ensuring consistency

Our goals

● Understand how LSM-tree works in RocksDB
● Measure the impacts of range deletes in RocksDB on read performance

○ Read throughput
○ I/Os
○ Memory footprint
○ CPU cycles

Introducing RocksDB

Persistent Key-Value store
developed at Facebook based
on Google’s LevelDB

Core Components

● memtable
● logfile (Write Ahead Log)
● sstfile (Sorted Strings

Table)

LSM-Tree in RocksDB

● RocksDB uses leveled compaction
by default, but can use a hybrid
structure
○ Tiering (level 0): each level has multiple

runs, sort-merge compaction triggered
by threshold

○ Leveling (level 1 - N): each level has at
most only 1 run

● When a level is full, compaction
will be triggered

● Mutable buffer → immutable
buffer → immutable file

● Each chunk of data is an SST file

LSM-Tree Range Delete in RocksDB

Tombstones first enter the mutable buffer
with timestamps

● During new operations, mutable buffer is
queried first and the range tombstones
are checked

● timestamp -> (start_range,
end_range)

Skyline facilitates lookups

● Merging all the range tombstones
● 2 dimensions: key range & timestamp

range

Experiment Setup - RocksDB API

● Platform: Azure VM, Linux CentOS 7.9 Standard B2s (2 vCPUs, 4 GiB RAM)
● Range delete types: “many small-range” vs. “a few long-range”

○ 10 small-range deletes, each one invalidates 9,999 entries
○ 3 long range deletes, each one invalidates 249,999 entries

● Data:
○ 1,000,000 key-value pairs
○ Key range: from "0000000" to "0999999"
○ Values: random 500-character strings

● Point queries: 100,000 random and non-repetitive lookups
● Range queries: 499,999 keys, from "0250000" to "0749999"

Preliminary Results - RocksDB API

● Read throughput: number of entries read per second
● “Many small-range”

○ Point query read throughput drops 45.8%
○ Range query read throughput drops 22.0%

● “A few long-range”
○ Point query read throughput drops 81.0%
○ Range query read throughput drops 85.5%

● The performance drop is too high

Preliminary Results - RocksDB db_bench Tools

Db_bench is the main tool used for benchmarking RocksDB performance

Set up:

RocksDB: Version 7.1

CPU: 2 * Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz

Keys: 64 bytes each

Values: 512 bytes each

Entries: 2500000

Block cache: 8MB

Number of range tombstone: 2

Range tombstone width: 10000

Preliminary Results - RocksDB db_bench Tools

Details of the range deletes (tombstone) setup. We use 2.5 million data keys, and
we place the first range tombstone at lower level, and the second range
tombstone at a higher level.

The total delete keys are 20000.

Compare the reading throughput before and after the range delete.

Db_bench – compaction stats

Score: for levels other than L0 the score is (current level size) / (max level size).

Preliminary Results - db_bench Test

Preliminary Results - db_bench Point Query

Time taken for one operation(random reading / point query) 10 times average:

Before range delete: 7.6298 micro sec / operation (2500000 of 2500000 found)

After range delete: 8.9799 micro sec / operation (2299811 of 2500000 found)

Performance dropped by 17%.

Conclusion & Future

● Preliminary observations
○ Ranges deletes indeed have significant damage to read performance
○ “A few long-range” is worse than “many small-range”

● On-going
○ More rigorous controlled conditions & more experiments
○ Better workload generator
○ Debugging the RocksDB API experiment code
○ Finding metrics for I/O, memory footprint (sizes of tombstones)
○ Comparing the utilities of RocksDB API & db_bench

Lessons Learned & Challenges

● Lessons
○ A better understanding on LSM-tree
○ Always have a plan B in case of emergency
○ Start EARLY

● Challenges
○ Compiling and getting started
○ Finding the correct metrics & functions
○ Programming in C++
○ Using db_bench

