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Problem Statement & Objectives

Logical deletes (invalidations) harm the read performance of LSM-tree

e The actual elimination of deleted data is deferred
e CPU overhead for managing the range-delete map

e Read amplification (number of disk-reads per query)
e Cost of ensuring consistency

Our goals

e Understand how LSM-tree works in RocksDB

e Measure the impacts of range deletes in RocksDB on read performance
Read throughput
I/0s

Memory footprint
CPU cycles
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Introducing RocksDB
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LSM-Tree in RocksDB

e RocksDB uses leveled compaction
by default, but can use a hybrid

structure
o  Tiering (level 0): each level has multiple
runs, sort-merge compaction triggered
by threshold
o Leveling (level 1 - N): each level has at
most only 1 run

e When alevel is full, compaction
will be triggered

e Mutable buffer — immutable
buffer — immutable file
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LSM-Tree Range Delete in RocksDB
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Experiment Setup - RocksDB API

e Platform: Azure VM, Linux CentOS 7.9 Standard B2s (2 vCPUs, 4 GiB RAM)

e Range delete types: “many small-range” vs. “a few long-range”
o 10 small-range deletes, each one invalidates 9,999 entries
o 3longrange deletes, each one invalidates 249,999 entries

e Data:

o 1,000,000 key-value pairs
o Keyrange: from "0000000" to "0999999"
o Values: random 500-character strings

e Point queries: 100,000 random and non-repetitive lookups
Range queries: 499,999 keys, from "0250000" to "0749999"




Preliminary Results - RocksDB API
Point Queries Range Queries
Before After Before After
Range Delete Type | Runtime | Entries Read | Runtime | Entries Read | Runtime | Entries Read | Runtime | Entries Read
10 Small-Ranges 0.59 100,000 0.98 89,956 0.13 499,999 0.15 449,999
3 Long-Ranges 0.61 100,000 0.80 24,870 0.55 499,999 0.76 100,000

e Read throughput: number of entries read per second

e “Many small-range”
o Point query read throughput drops 45.8%
o Range query read throughput drops 22.0%
e “Afew long-range”
o Point query read throughput drops 81.0%
o Range query read throughput drops 85.5%

The performance drop is too high




Preliminary Results - RocksDB db_bench Tools

Db_bench is the main tool used for benchmarking RocksDB performance

Set up:
RocksDB: Version 7.1
CPU: 2 * Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz
Keys: 64 bytes each
Values: 512 bytes each
Entries: 2500000
Block cache: 8MB

Number of range tombstone: 2

Range tombstone width: 10000



Preliminary Results - RocksDB db_bench Tools
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Db_bench — compaction stats

** Compaction Stats [default] **
Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s

95.90 MB

8/0  255.81 MB

11/0 351.74 MB

Sum 22/@  703.45 MB
Int 0/0 0.00 KB

** Compaction Stats [default] **
Priority Files Size Score Read(GB) Rn(GB) Rnpl(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp RA(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB)

Score: for levels other than L0 the score is (current level size) / (max level size).




Preliminary Results - db_bench Test
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Preliminary Results - db_bench Point Query

Time taken for one operation(random reading / point query) 10 times average:
Before range delete: 7.6298 micro sec / operation (2500000 of 2500000 found)
After range delete: ~ 8.9799 micro sec / operation (2299811 of 2500000 found)

Performance dropped by 17%.




Conclusion & Future

e Preliminary observations
o Ranges deletes indeed have significant damage to read performance
o “Afew long-range” is worse than “many small-range”

e On-going

More rigorous controlled conditions & more experiments

Better workload generator

Debugging the RocksDB API experiment code

Finding metrics for I/0, memory footprint (sizes of tombstones)

Comparing the utilities of RocksDB API & db_bench
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Lessons Learned & Challenges

e Lessons
o A better understanding on LSM-tree

o Always have a plan B in case of emergency
o Start EARLY

e Challenges
Compiling and getting started

Finding the correct metrics & functions
Programming in C++

Using db_bench
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