CAS CS 561
Research Project Presentation
Range Deletes in LSM-Trees

Presented by: Guanzhang Li, Kaize Shi, Shirene Cao
Mentor: Subhadeep Sarkar

Problem Statement & Objectives

Logical deletes (invalidations) harm the read performance of LSM-tree

e The actual elimination of deleted data is deferred
e CPU overhead for managing the range-delete map

e Read amplification (number of disk-reads per query)
e Cost of ensuring consistency

Our goals

e Understand how LSM-tree works in RocksDB

e Measure the impacts of range deletes in RocksDB on read performance
Read throughput
I/0s

Memory footprint
CPU cycles

O O O O

Introducing RocksDB

For each Column Family

Memtable Full

Persistent Key-Value store
developed at Facebook based
on Google's LevelDB

Memory

Persistent Media

Core Components

Compaction
(Merge Sort, remove stale
entries)

e memtable
e logfile (Write Ahead Log)
e sstfile (Sorted Strings

[able) o
All SST Files are
O 0 0 O
Keeps k of all ntncheesie
Files; anges (WAL
swi change,
e

LSM-Tree in RocksDB

e RocksDB uses leveled compaction
by default, but can use a hybrid

structure
o Tiering (level 0): each level has multiple
runs, sort-merge compaction triggered
by threshold
o Leveling (level 1 - N): each level has at
most only 1 run

e When alevel is full, compaction
will be triggered

e Mutable buffer — immutable
buffer — immutable file

Each chunk of data is an SST file

Write

Log Structured Merge Trees

Memtable

g
Immutable

U’ Flush & Mihor Compactign

DISK

LovelN l SSTable | | SSTable | | SSTable | SSTable r 1000MB

... +|

LSM-Tree Range Delete in RocksDB

Write

Tombstones first enter the mutable buffer equeet
with timestamps \

e During new operations, mutable buffer is

Persistent

queried first and the range tombstones Storags

E—

are checked
® timestamp -> (start range,
end range)

Compaction

Skyline facilitates lookups

e Merging all the range tombstones
e 2 dimensions: key range & timestamp
range ‘

Index Key

Experiment Setup - RocksDB API

e Platform: Azure VM, Linux CentOS 7.9 Standard B2s (2 vCPUs, 4 GiB RAM)

e Range delete types: “many small-range” vs. “a few long-range”
o 10 small-range deletes, each one invalidates 9,999 entries
o 3longrange deletes, each one invalidates 249,999 entries

e Data:

o 1,000,000 key-value pairs
o Keyrange: from "0000000" to "0999999"
o Values: random 500-character strings

e Point queries: 100,000 random and non-repetitive lookups
Range queries: 499,999 keys, from "0250000" to "0749999"

Preliminary Results - RocksDB API
Point Queries Range Queries
Before After Before After
Range Delete Type | Runtime | Entries Read | Runtime | Entries Read | Runtime | Entries Read | Runtime | Entries Read
10 Small-Ranges 0.59 100,000 0.98 89,956 0.13 499,999 0.15 449,999
3 Long-Ranges 0.61 100,000 0.80 24,870 0.55 499,999 0.76 100,000

e Read throughput: number of entries read per second

e “Many small-range”
o Point query read throughput drops 45.8%
o Range query read throughput drops 22.0%
e “Afew long-range”
o Point query read throughput drops 81.0%
o Range query read throughput drops 85.5%

The performance drop is too high

Preliminary Results - RocksDB db_bench Tools

Db_bench is the main tool used for benchmarking RocksDB performance

Set up:
RocksDB: Version 7.1
CPU: 2 * Intel(R) Xeon(R) Platinum 8171M CPU @ 2.60GHz
Keys: 64 bytes each
Values: 512 bytes each
Entries: 2500000
Block cache: 8MB

Number of range tombstone: 2

Range tombstone width: 10000

Preliminary Results - RocksDB db_bench Tools

Details of the range del [il]@[MS_,;“] million data keys, and
we place the first range . cond range
tombstone at a higher | Z:ﬂ

Level 0 -

L]

The total delete keys al Level1 4@]“"’“’“

a1 1 1)

) T T T T T e

Compare the reading tt

Db_bench — compaction stats

** Compaction Stats [default] **
Level Files Size Score Read(GB) Rn(GB) Rnp1(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp Rd(MB/s

95.90 MB

8/0 255.81 MB

11/0 351.74 MB

Sum 22/@ 703.45 MB
Int 0/0 0.00 KB

** Compaction Stats [default] **
Priority Files Size Score Read(GB) Rn(GB) Rnpl(GB) Write(GB) Wnew(GB) Moved(GB) W-Amp RA(MB/s) Wr(MB/s) Comp(sec) CompMergeCPU(sec) Comp(cnt) Avg(sec) KeyIn KeyDrop Rblob(GB) Wblob(GB)

Score: for levels other than L0 the score is (current level size) / (max level size).

Preliminary Results - db_bench Test

. : Microseconds per read:
Microseconds pex: read: Count: 2500000 Average: 9.1555 StdDev: 6.91
Count: 2500000 Average: 7.5906 StdDev: 1.68 Min: © Median: 8.2175 Max: 9545
Min: 1 Median: 7.8533 Max: 259 Percentiles: P50: 8.22 P75: 9.49 P99: 14.93 P99.9: 32.06 P99.99: 48.43
Percentiles: P50: 7.85 P75: 8.96 P99: 12.74 P99.9: 30.71 P99.99: 41,24~~~ T TTTTTTTTTTITTTTTommoTTToomommm T
[o, 1] 86181 3.447% 3.447% #
““““““““““““““““““““““““““““““ (1, 2] 4951 ©.198% 3.645%
[0, 1] 27 0.001% 0.001% (2, 3] 18423 0.737% 4.382%
(1; 2] 1700 0.068% 0.069% E z 2 } ggz;ll ‘; ggg 2 ;g;;
(2, 3] 17670 0.707% ©.776k (61 10 | 1970638 78.826% 85.127% HHHHHHHHHHHHHHE
(3 4] 26593 1.064% 1.840% (10, 15] 351746 14.070% 99.197% #it#
(4, 6] 153714 6.149% 7.988% # (15, 22] 8607 0.344% 99.541%
(6, 10] 2266924 90.677% O8.665% i HHHHHH g % } 10702 002 oo
(10, 15] 15289 0.612% 99.277% (51, 76 1 105 ©.004% 99.998%
(15, 22 | 9967 ©0.399% 99.675% (76, 110] 34 0.001% 99.999%
(2, 4] 7740 0.310% 99.985% (119, 170] 7 AI0edK.100. 000K
: (170, 250] 1 0.000% 100.000%
(34, 51] 296 0.012% 99.997k (250, 380] 3 ©0.000% 100.000%
(51; 76] 64 0.003% 99.999% (380, 580] 2 0.000% 100.000%
{ 75 uB] I bele.e ¢ w6 1pe] 2 eiesseen
(119, 170] 2 0.000% 100.000% (1990i 2900] 1 ©.000% 100.000%
(250, 380] 1 0.000% 100.000% (6600, 9900] 1 ©.000% 100.000%

Preliminary Results - db_bench Point Query

Time taken for one operation(random reading / point query) 10 times average:
Before range delete: 7.6298 micro sec / operation (2500000 of 2500000 found)
After range delete: ~ 8.9799 micro sec / operation (2299811 of 2500000 found)

Performance dropped by 17%.

Conclusion & Future

e Preliminary observations
o Ranges deletes indeed have significant damage to read performance
o “Afew long-range” is worse than “many small-range”

e On-going

More rigorous controlled conditions & more experiments

Better workload generator

Debugging the RocksDB API experiment code

Finding metrics for I/0, memory footprint (sizes of tombstones)

Comparing the utilities of RocksDB API & db_bench

O
O
O
O
O

Lessons Learned & Challenges

e Lessons
o A better understanding on LSM-tree

o Always have a plan B in case of emergency
o Start EARLY

e Challenges
Compiling and getting started

Finding the correct metrics & functions
Programming in C++

Using db_bench

O
O
O
O

