Implementation of LSM-Tree

Yinan An, Minghui Yang, Shun Yao

https://bu-disc.github.io/CS561/projects/CS561-S22-SysProj-LSM-trees.pdf

Achievements

Achievements Overview

1. LSM-Tree and database basic implementations:
a. Zone(includes Fence Pointer), Run(includes metadata and data file
paths), Level, MemoryTable, DeletedList(for RangeDelete)
b. Leveling and Tiering compaction strategies
c. Single Query, Range Query, Single Delete, Range Delete, Put
d. Extend basic_test: add tests for “RangeDelete”
e. Durable database and compatibility with multiple databases
2. SST data file saved in binary format and read files in blocks
Compatibility with multiple databases
4. Perform basic functionality tests, durable tests and different experiments

w

Highlight
&

Implementation

Database initialization and multiple databases

When opening a database

v Bl Storage

- Read the config file with its name the same as > | -;KDL;S::;;;?
database name. If the config file doesn't exist, create > B MIRZUKXSYR
a new data directory for this database and a config - YU;‘ZSOELDD
file with default settings.

- Construct Levels of the database v m3ss

- Load metadata of each Run into the memory. And
load delete list.

Zone and Binary file

Zone is to record the min/max key and the
byte range(min/max byte) of every data
block(file block).

Create zone from data map:
number of elements per zone: N

Every key-value pair in map has a byte offset relative to the start of map

memory

Bloom fence SoHES
MMTable filters pointers

» »

disk

file
blocks

> levell

> >

—> level2

Y
Y

> level3

For every N elements in map, create a zone to record min/max key and

min/max byte based on offset.

Write/Read file in binary format: std::ios::binary

Read file block based on offset:

seekg(offset, std::ios::beg)

To Save a Run in disk:

db.cpp
initialize
metadata

\4

db.cpp
create zones and set

metadatz zones in metadata

\4

Run.cpp
create a Run, create
BF and FP in metadata

\4

date
db.cpp

get metadata from run
save metadata and
data in files

Leveling and Tiering Compaction

e Timing: put() (check threshold of memorytable) & close()

Data in memorytable will be
cleaned and stored in a new
SST (corresponds to a new Run)

l

compactLeveling(Run run)
/ compactTiering(Run run)

Leveling and Tiering Compaction

e Leveling Strategy:
CompactLeveling(run)
1. a new Run
2. a Run from upper level
if current level is empty ?
tart from top level to bottom leve yes
1
no
Y
vt rerbisvel 1. Merges the only Run in the current level
(if current level is the with the Run to be added to the level and Get push into current level directly
bottorn level. new a a data map (use new data override old data) (read data and generate a
level and cz;lculate 2. Delete these 2 Runs and their SSTs new Run and SST with new
. 3.Generate new Run and SST, and push into path and new level number)
its threshold (T*2)) e [yal

t Y
yes

size over threshold of this level ?

no, break loop
\J

Leveling
read-optimized

W
I
— — -
e ——
merge
v m— w— w— w— w— — — —

Leveling and Tiering Compaction

e Tiering Strategy:

CompactTiering(run) Tieri ng
* write-optimized

push new run into first level directly

(- A
over threshold of this level ? \ | Truns per level
yes) - .L :\X\‘_ =
1. Merges the all Runs in the current level and
Get a data map | G S - -
2. Delete all these Runs and their SSTs
3.Generate a new Run and a SST, and push

into next level

4. move to next level(if current level is the T runs per level

bottom level, new a level and calculate its
threshold (T"2))

v (merge & flush ¥

no, break loop

Kxperiments

Basic Test, Persistent Test and Durable Test

All following tests and experiments are performed under
CPU: M1-pro OS: MacOS 12.0 Cppl7

/Users/albertan/Documents/CS561/561-final-project/cmake-build-debug/tests/basic_test
Running 6 tests from 1 test suite.
Global test environment set-up.

/Users/albertan/Documents/CS561/561-final-project/cmake-build-debug/tests/persistence_test 6 tests from DBTest

- 2 DBTest.IsEmptyInitially
r .
Running 2 tests from 1 test suite DBTest.IsEmptyInitially (2 ms)

Global test environment set-up. DBTest.GetFunctionality
DBTest.6etFunctionality (@ ms)

N . DBTest.PutAndGetFunctionality
PersistenceTest. BasmOpenClose DBTest.PutAndGetFunctionality (@ ms)

2 tests from PersistenceTest

PersistenceTest.BasicOpenClose (1 ms) DBTest.DeleteFunctionality

DBTest.DeleteFunctionality (1 ms)

DBTest.ScanFunctionality

PersistenceTest.DeleteOpenClose (0 ms) DBTest.ScanFunctionality (8 ms)

2 tests from PersistenceTest (2 ms total) DETest RangoleTe PRunct onat Ty
DBTest.RangeDeleteFunctionality (@ ms)
6 tests from DBTest (5 ms total)

PersistenceTest.DeleteOpenClose

Global test environment tear-down
. Global test envi Lt -dow
2 tests from 1 test suite ran. (2 ms total) S onv1ronmen‘ il
6 tests from 1 test suite ran. (5 ms total)
2 tests. 6 tests.

Leveling, Number of elements per zone: 50, First level threshold: 50, MMTable: 50

/Users/albertan/Documents/CS561/561-final-project/cmake-build-debug/examples/simple_benchmark benchmark_db.txt -f ../../data/test_3000000_16.data -w ../../data/test_3000000_10_56000.wl
Workload Time 8863683553 us

Process finished with exit code ©

Finish 3 million insertions and 3 million operations with data-dimension equals to 10 in 8864s
(about 2.5h)

Kxp-1: Evaluate Base Threshold of Levels

LeVelng strategy Level Threshold Affacts on Database Performance

7600
Number of elements per zone: 50 7400

7200
7000

MMTable size: 25 2 600

test 10000 3.data -
test._ 10000 3 2000.wl o

50 100 300 500 700 1000
First Level Threshold

Kxp-2: Evaluate No. of Klements per Zone

Leveling and Tiering strategies
No. of Zone Elements Affacts on Database Performance

First level threshold: 25 — el il
MMTable size: 25
test_10000_3.data E =
test_10000_3 2000.wl £ oo ——

5 10 25 50 75
Number of Elements per Zone

Kxp-3: Kvaluate BF

Leveling strategy

Number of elements per zone: 50
MMTable size: 25
test_10000_3.data

test_10000_3_2000.wl

s1ze

9000
8000
7000
6000

5000

Time/ms

4000

3000

2000

1000

BF Affects on Database Performance

—bitsPerElement =64 —bitsPerElement=8

100 300 500 700 1000
First Level Threshold

Kxp-4 Kvaluate Key Distribution

Leveling strategy Key Distribution
25000

Number of elements per zone: 50
20000

First level threshold: 50

15000

£
MMTable size: 25 H
= 10000
test 10000 3.data
5000
test_ 10000 _3 200.wl . I l
test_ 10000 _3 2000.wl 200 2000

test_10000_3_10000.wl Max Key

10000

Exp-5: Reading/Writing Cost
Leveling strategy

Number of elements per zone: 50

First level threshold: 50

MMTable size: 25

Reading-predominant:
test_ 100 _3.data test 10000 3 2000.wl

Writing-predominant:
test_10000_3.data test 100 3 200.wl

(%]

T 4000
€

=

8000
7000
6000
5000

3000
2000
1000

Reading-predominant Operations

Leveling

Tiering

Writing-predominant Operations

Leveling

Tiering

Kxperience
&
Challenges

Mechanism of Range Delete: Due to the lack of information, we spent a long time to
figure out that we need to add timestamps in our database and each Value, contain a list of
deleted records (start, end, timestamp) and modify the query methods.

Compact Leveling and Tiering: Although we understand the fundamental concepts of
both approaches, there are a lot of details to deal with when writing code.

Google test and CMake: We had no experience with CMake and Google Test. So, it took
us a long time to modify the CMakeLists.txt and find out the workflow of Google test. For
example, when we were trying to run “basic_test”, value in ASSERT_KEQ and
EXPECT_EQ are always different from what we expect, until we find out that the
methods Setup() ran before every test.

Data store in binary format: Reading string and vector from binary files is challenging at
first because the size of it is uncertain. So when we write string and vector to file, we first
write the size, it will help us to read later. Also we have no experience in reading from a
file block instead of the entire file, then we find the function seekg is useful to read file
from a specific offset.

Thank You!

