
Bufferpool
Implementation

Mia Li, Samir Farhat Dominguez,
Stephany Yipchoy

Introduction

● Bufferpool overview
○ Buffer Hit
○ Buffer Miss
○ Dirty Bits
○ Eviction Strategies

● Optimize for different workloads
to maximize read and write
performance by maximizing hits

LRU Policy

● When the bufferpool becomes full, we
discard the least recently used page

● The pages that have been most heavily
used in the past are more likely to be used
heavily in the future too

MRU LRU

5 49 31 94 12 28 101

● Deque -> easy
insertion/remove from both
end

● Store: Page Id

● Return: Position of the least
used page in bufferpool ->
target evicting position

CFLRU Policy

● Separate LRU list into 2 parts

● Keep a certain amount of dirty
pages in cache to reduce the
number of flash write operations

● we opted for the window to be ⅓
of the current amount of pages in
the buffer

LRU: p8 -> p7 -> p6-> p5
CFLRU: p7 -> p5 -> p8 -> p6

LRU-WSR Policy

● Second chance algorithm -> Cold flag
can only be set on the second time
(reordered writing sequences)

● The only difference between those
two policies is that LRU-WSR assign
each page with a bit flag called
“cold-flag”

● In bufferpool we store tuple(page id,
dirty bit, cold flag)

Get LRU
page, Check
dirty bit

Clean Dirty

Delete from
bufferpool

Check
cold flag

Delete from
bufferpool

Move page to
MRU, set cold
flag

Set Not set

FIFO Policy

● First in first out, implemented by
queue

● when a page hits:
○ LRU will move this page to the

MRU position
○ FIFO will make no changes to the

queue.

● Simple but not efficient for large
number of pages → the operating
system keeps track of all pages in the
memory in a queue

Disk Implementation
- Disk populated with arbitrary random bytes
- Writes and reads with seekg

- One continuous character when written over(
except last character is ‘\n’)

- One page per line, no sectors because just a quick
computation and isn’t productive to objectives

- Keeping file open may not be true reflection
of disk access unless disk size exceeds
RAM

- We saw only a slight increase in timings
- Disk object belongs to Buffer class

Experiments

Challenges and Lessons Learned

- Disk management
- At first only appending seemed possible without a complete overwrite

- Seg faults in overall simulation run script
- Construct the bufferpool to be more adaptive
- Learned that it’s much easier to have a small workload and know exactly

how it should perform
- Read other research for guidance

Conclusions

● Implemented: FIFO, LRU,
CFLRU, LRU-WSR, and Disk
Functionality

● For balanced workloads, the
simplest approach is also the
best

● Intended extensions of this
work:

○ Experiment with read heavy and
write heavy workloads

○ Add more flexibility to the buffer
with more parameters

