
Implementation of LSM

By Hantian (Alan) Liu, Joseph Mitchell, Junchen Liu



Introduction
● Structure

● APIs

● Options



Structure



APIs

● Get

● Put

● Scan

● Range Scan

● Delete

● Range Delete



Options



Challenges
● Range Delete

● Scan

● Persistent(insert/visible/timesta
mp/index/metadata)



RangeDelete(int min_key, int max_key)

Old Approach:
- Insert tomestones one by one
- Disadvantages: Users Range 

Delete 1 - 1M
We Use:

- Insert a interval with a 
timestamp into a vector

- Compair
Problem:

- Scan the vector when GET
Possible Improvement:
Update the Delete Vector



Persistent
Goal:

- Manage the data storage
- Persistent the database when closed

Index in each Level:

- Byte count
- Id of each table in this Level

Metadata of DB:

- No of current SSTable to avoid overlap
- Configuration of current DB



Experiments
● BloomFilter

● Level Threshold

● Compact Strategy



Experiment Parameters
Data

10k entries

5 dimension

Workload

10k operations

10k key range

Default Setting

Memory Table size 1k

Level 0 size 4k

Level 1 size 16k



Bloom Filter Test
BF size = 1024

Runtime 419s

BF size = 10000

Runtime 312s



Level Size
Memory Table size 1k

Level 0 size 4k

Level 1 size 16k

Runtime 410s

Memory Table size 2k

Level 0 size 8k

Runtime 403s



Compact Strategy
Tiering

Runtime 419s

Multiply dataset size and level size by 100

Runtime more than 1h

Leveling

Runtime 410s

Runtime 15 min



Conclusion



There’s a significant bottleneck in the system we need to fix

Large bloom filter can largely increase the performance

Leveling search through one run in one level and performs 
better when data size is large


