
Buffer Pool

CS 561- Systems Project
Harsh Mutha

Aditya Pal
Manind Gera

Problem Statement

Eviction Policies Implemented

LRU LRU-WSR LFU CFLRU

Challenges

• Implementing CFLRU was quite tricky in the start

• Adjusting to C++

• Perf does not work on mac, worked on Azure

•

Experimental
Highlights &
Results

Standard Workload

•Parameters :

•b = 150 (no of pages in buffer pool)

•n = 1500 (no of pages in disk)

•x = 7500 (no of operations for workload to execute)

•e = 60 (percentage reads)

• a = 0…3 (type of eviction algorithm)

•s = 90 (skew percentage)

•d = 10 (skewed data percentage)

Changing parameters s(skew
percent) and d(skewed data
percentage)

•Parameters :

•b = 150 (no of pages in buffer pool)

•n = 1500 (no of pages in disk)

•x = 7500 (no of operations for workload to execute)

•e = 60 (percentage reads)

• a = 0…3 (type of eviction algorithm)

•s = 50 (skew percentage)

•d = 50 (skewed data percentage)

Changing parameters b(size of
buffer pool) and d(size of disk)

•Parameters :

•b = 10 (no of pages in buffer pool)

•n = 500 (no of pages in disk)

•x = 7500 (no of operations for workload to execute)

•e = 60 (percentage reads)

• a = 0…3 (type of eviction algorithm)

•s = 90 (skew percentage)

•d = 10 (skewed data percentage)

Changing parameter e(percent
reads) and making it more write
focused

•Parameters :

•b = 150 (no of pages in buffer pool)

•n = 1500 (no of pages in disk)

•x = 7500 (no of operations for workload to execute)

•e = 40 (percentage reads)

• a = 0..3 (type of eviction algorithm)

•s = 90 (skew percentage)

•d = 10 (skewed data percentage)

Changing parameter s(skew
percent) while keeping d(skewed
data percent) unchanged

•Parameters :

•b = 150 (no of pages in buffer pool)

•n = 1500 (no of pages in disk)

•x = 7500 (no of operations for workload to execute)

•e = 60 (percentage reads)

• a = 0…3 (type of eviction algorithm)

•s = 50 (skew percentage)

•d = 10 (skewed data percentage)

Keeping parameters unchanged,
and calculating latency

•Machine Details :

•RAM = 1GiB, vCPUs = 1, Size = Standard B1s

•Parameters :

•b = 150 (no of pages in buffer pool)

•n = 1500 (no of pages in disk)

•x = 7500 (no of operations for workload to execute)

•e = 60 (percentage reads)

• a = 0…3 (type of eviction algorithm)

•s = 50 (skew percentage)

•d = 10 (skewed data percentage)

Conclusion

CFLRU seems to be the best
option for an eviction policy

when latency is ignored. In all
our experimental runs, CFLRU
had the best buffer hit, buffer

miss ratio.

When considering latency, LFU
turned out to be the best option,

as it plainly involves returning
the slot based on minimum

number of references.

LRU stands to be the best
eviction policy when considering
ease of implementation, latency,

and CPU utilization.

LRU-WSR seems like a great
option when the workload is a
write focused rather than read
focused. Its hit ratio is only less

than CFLRU, but when
compounded with latency,

LRU-WSR seems like a winner.

Our advice

- - 1djkcn ● Start Early
● Use office Hours
● Modularise the code
● Do your research
● Stack Overflow!

Thank You!

Aditya Pal, Harsh Mutha, Manind Gera.

