
CS561: Dual B+ Tree
Presentation

Lanfeng Liu, Ning Wang, Jianqi Ma

Overview

Dual-tree index

Unsorted tree

Sorted tree

Outlier detector

Heap

Data to be indexed

U U S S U

Query buffer

…

➀

➁ outlier➂

User’s query

❶

non-outlier➂

Unsorted❷

Sorted first❷

If miss
❸

If miss

❸

If miss two times
❹

Overview of the dual-tree system

Insertion optimization

Basic insertion

Start: insert
new key

Is this key greater
than the maximum
key of the sorted
tree?

Insert it to the
sorted tree

Insert it to the
unsorted tree

end end

yes no

1 3 6 0 2 4 5 7 9 8 14 15 13 10

1 3 6 7 9 14Sorted Tree

Unsorted Tree

Basic insertion: example

0 2 4 5 8

1 3 6 7 9 14 15

0 2 4 5 8 10 13

Basic insertion: drawbacks

● The space utility is low: all nodes except the tail leaf node
are at most half-full

● A big key can prevent many other keys being inserted into
the sorted one.

1 3 6 7 9 14 15

0 2 4 5 8 10 13

2 simple optimizations of the insertion(2 tuning knobs)

● The space utility is low: all nodes except the tail leaf node are at most half-full

- Split nodes unevenly

● A big key can prevent many other keys inserting into the sorted one.

- Allow insertion to the tail leaf

Knob name Function Domain

SORTED_TREE_SPLIT_FRAC Decide how many keys remain in
the original node after splitting

[0.5, 1)

ALLOW_SORTED_TREE_INSER
TION

Allow insertion to the tail leaf of
the sorted tree.

{true, false}

Optimized insertion: example

1 3 6 0 2 4 5 7 9 8 14 15 13 10

Sorted Tree

Unsorted Tree

1 2 3 4 5 6 7 8 9 13 14 15 10 …

0

However…

14 15 6 0 2 4 5 7 9 8 3 1 13 10

Sorted Tree

Unsorted Tree

14 15

0 1 2 3 4 5 6 7 8 9 13 8 9 10 13 …

Insertion with a heap buffer(1 tuning knob)

Knob name Function Domain

HEAP_SIZE Define the size of the heap
buffer, 0 means no heap buffer is
used.

Non-negative
integers

Insertion with a minimum heap buffer

14 15 6 0 2 4 5 7 9 8 3 1 13 10

Heap buffer

Sorted Tree

Unsorted Tree

0 8 9 10

 6

14 15

0 2 4 5 6 7

1 3

13

Insertion with a heap buffer(1 tuning knob)

Knob name Function Domain

HEAP_SIZE Define the size of the heap
buffer, 0 means no heap buffer is
used.

Non-negative
integers

The size of heap buffer should not be too large, because the cost of maintaining a
heap buffer is non-negligible.

However, again…

0 1 45 2 56 3 67 4 79 57 5 6 13 …

Heap buffer

56 67

45

Sorted Tree

Unsorted Tree

0 1 2 30 1 2 3 4 45

79 67

57

56

5 6 13

We could handle this by using a
larger heap, however, we need to
consider the cost brought by a
larger heap, and we cannot always
enlarge the size.

Insertion with the outlier detector

● Metric: The average distance between every two consecutive keys of the sorted tree

● How to use the metric?
○ The easiest way is to compare the average distance(dist_avg) with the distance

between a new key and the maximum key of the sorted tree(dist_new). If dist_avg is
greater or equal to dist_new, then insert the new key into the sorted tree.

dist_new ≤ dist_avg

Insertion + heap buffer + outlier detector(easiest)

0 1 45 2 56 3 67 4 79 57 7 6 13 …

Heap buffer

79 67

56Outlier
detector

Average distance:1
Previous inserted:4

0 1 2 3 4Sorted Tree

Unsorted Tree 457 45 56

Key 7 will be inserted to the
unsorted tree, which is not
expected.

79 67

57

Insertion with the outlier detector

● Metric: The average distance between every two consecutive keys of the sorted tree

● How to use the metric?
○ The easiest way is to compare the average distance(dist_avg) with the distance

between a new key and the maximum key of the sorted tree(dist_new). If dist_avg is
greater or equal to dist_new, then insert the new key into the sorted tree.

dist_new ≤ dist_avg

○ Tolerate “small” gaps between every two tuples using a tolerance_factor.
dist_new ≤ dist_avg ∙ tolerance_factor

Insertion + heap buffer + outlier detector(fixed tolerance)

0 1 45 2 56 3 67 4 79 57 7 20 13 …

Outlier
detector

Average distance:1
Previous inserted:4
Tolerance factor: 10

0 1 2 3 4Sorted Tree

Unsorted Tree 45

Heap buffer
79 67

56

45 56

0 1 2 3 4 7

Average distance:1.4
Previous inserted:7
Tolerance factor: 10

79 67

57

After inserting the key "7", the average
distance become 1.4, which means the
real outlier key "20" will be inserted
into the sorted tree because 1.4 ∙ 10 >
20 - 7, and the average distance will
grow again

Insertion with the outlier detector

● Metric: The average distance between every two consecutive keys of the sorted tree

● How to use the metric?
○ The easiest way is to compare the average distance(dist_avg) with the distance

between a new key and the maximum key of the sorted tree(dist_new). If dist_avg is
greater or equal to dist_new, then insert the new key into the sorted tree.

dist_new ≤ dist_avg

○ Tolerate “small” gaps between every two tuples using a tolerance_factor.
dist_new ≤ dist_avg ∙ tolerance_factor

○ Update tolerance_factor during the process according to a expected average
distance.

dist_new ≤ dist_avg ∙ tolerance_factor
+

tolerance_factor′ = tolerance_factor ∙
expected_avg_distance

avg_distance

Insertion + heap buffer + outlier detector(elastic tolerance)

0 1 45 2 56 3 67 4 79 57 7 20 13 …

Outlier
detector

Sorted Tree

Unsorted Tree

Heap buffer

45 56

0 1 2 3 4 7

Expected avg: 1
Initial tolerance factor: 10
Average distance:1.4
Previous inserted:7
Tolerance factor:7.14

79 67

57

20 45 56

Insertion with outlier detector(2 tuning knob)

Knob name Function Domain

INIT_TOLERANCE_FACTOR Define initial tolerance factor. If it
is 0, then the outlier detector is
disabled.

Float numbers
greater than 0.

EXPECTED_AVG_DISTANCE The expectation of the average
distance of the sorted tree. If it is
less or equal to 1, the tolerance
factor is fixed.

Float numbers
greater than 1.

Query optimization

Basic Query

User query

If miss

User query

Dual B+ tree
B+ tree

Simple Query Optimization

If miss

User query

Buffer
If miss

● Query larger tree first

MRU (most recently used) query

● Keep a buffer for the results of past n queries
● First search the tree that’s been queried the most frequently

● A new query comes, search blue tree first, update buffer

Experiment

Sortedness Representation

● k: noise percentage
● l: window size

0 1 5 3 4 2 6 7 8 9

K = 20%, l = 30%

0 1 2 3 4 5 6 7 8 9

K = 0%, l = 0%

Insertion Benchmark

● Baseline: single B+ tree
● Data size: 100K, 1M, 10M, 50M
● Dual B+ tree tuning knobs:

○ Sorted tree split fraction = 0.9
○ Unsorted tree split fraction = 0.5
○ Heap buffer size = 16
○ Initial outlier tolerance factor = 100
○ Minimum outlier tolerance factor = 20
○ Expected average distance = 2.5
○ Allow sorted tree insertion = 1
○ Query Buffer Size = 20

Insertion benchmark: comparison with single B+- tree

● The insertion performance of the dual-tree system completely outperforms that of single B+- tree.

● Our dual-tree system do make good use of the sortedness in the dataset.

Insertion benchmark: Number of keys in the sorted tree
with different K

● As the value of k decrease, the
number of keys in the sorted
tree increases.

● Even though k is 50(half of the
keys are out of order), the
sorted tree still contains almost
40% of all keys.

Insertion benchmark: Number of keys in the sorted tree
with different L

● The change of the value of l
hardly influence the
performance .

● However there is an immediate
drop when dataset size is
100K(l = 10). The possible
reason is that the initial
tolerance factor is too large.

Query Benchmark

● Baseline: single B+ tree
● Data size: 100k, 1M, 10M, 50M
● Query workload: random, sequential
● Metric: cumulative query response time
● Dual B+ tree tuning knobs: same as query benchmark

Query Benchmark - increasing noise percentage

Query Benchmark - increasing window size

Conclusion

● Dual B+ tree
○ Sorted tree: insert in order elements
○ Unsorted tree: insert out of order elements

● Insert optimization
○ Heap buffer
○ Outlier detection

● Query optimization
○ MRU buffer

● Future work
○ Parallel query
○ Individual insertion and query time
○ Query Experiment on other type of workloads

