
Implementation of 
a Log-Structured 

Merge (LSM) Tree
A Systems Project by:
Adit Mehta
Amara Nwigwe
Huda Irshad
Satha Kitirattragarn



Overview

01/



Tiering

X*n

X*n²

X*n³

L1

L2

L3

Mem
Table X

Level # Level Size

.

.

.

. . .



Leveling

X*n

X*n²

X*n³

L1

L2

L3

Mem
Table X

Level # Level Size

.

.

.

. . .



Operational Policies

● Put → Point-Insert
● Write → Bulk-Insert
● Get → Point-Query
● Scan → Range-Query, Bulk-Query
● Delete → Point-Delete, Range-Delete

Contents



Interests/
Challenges

02/



Leveling Tiering

Compaction Implementation
Team



Design vs Code

Code:
● Variables
● Functions – modularity
● Accessibility
● Code Paths

Design:
● Physical Layout
● Theoretical transaction 

policies 



Experimental
Highlights

03/



Dynamic 
Leveling

Does anyone recognize what seems odd?



Mystery 
Recursion
When it came to setting up tiering on our LSM 
tree, we were trying to create new files if levels 
were full and setup a recursive call. That 
caused us to see the strange level order you 
see on the right.



Lessons
Learned

04/



When unsure, 
visualize.

Makefiles are 
the best.

Taking breaks 
helps.
When unable to debug, 
taking the focus off work 
for a bit freshens you up.

To squish a bug, 
think differently.
Bugs lie where you fail to 
notice. Think from a different 
perspective to catch them!

01/

Saves a lot of time that 
would o/w be spent 
executing commands.

Small progress, 
big difference.
Incremental progress 
boosts overall progress as 
much as group’s morale.

One door closes, 
another opens.

02/ 03/

Lots of errors from not keeping 
track of open() and close().

04/ 05/ 06/

Drawing things out when 
unsure of the logic helps.

Lessons Learned



Sincere Advice

● Start work early. Brush up on required programming knowledge before anything else.
● Before writing code, always draw the logical/conceptual design out first and foremost!
● Always test out small parts of code to ensure that it’s working properly before moving 

on to other parts..
○ You’ll be tempted to move on to work on subsequent parts even when the current part 

is still bugged. Resist the temptation and focus on debugging the current part.
● Print statements (printf’s/cout’s) are always handy for debugging.
● For each part done, detailed GitHub commit description will be vital when you need 

to check back on code that runs properly.



Conclusion

05/



Progress So Far

So far, our LSM tree works for with our:

● Put policy
● Write policy
● Delete policy
● Tunable parameters (implemented 

as command line arguments)
● Stored/organized data tables
● Tiering and Leveling, when it comes 

to inserts

Things to be fixed and brushed up:

● Read policy
● Get policy with tiering*
● Stored data tables with leveling

*a little issue with leveling and 
tiering when it comes to Queries, 
some items are found missing and 
we are working to fix that!



CREDITS: This presentation template was created 
by Slidesgo, including icons by Flaticon, 
infographics and images by Freepik

Thank You
For Your 

Attention!

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

