
Class 6: Adaptive Hybrid
Storage Layouts
By Sean Bready

Review of the Paper:Bridging the Archipelago between Row-Stores and Column-Stores for Hybrid Workloads

OLTP vs OLAP (vs HTAP)

Online Analytical Processing (OLAP)

Large Aggregate queries

Read only Queries

Complex- multi-step queries

Highly variable ad hoc queries

Which kind of physical storage layout would favor this kind of workload?

Examples of OLAP style Databases (Data
Warehouses)
Amazon’s RedShift

Biquery

Snowflake

Hive/HDFS/Spark

Online Transactional Processing (OLTP)

High Throughput of CRUD operations

Single object manipulation

Simple Queries

Which kind of physical storage layout would favor this kind of workload?

Examples of OLTP style Databases

Postgres

MySQL

MS SQL Server

Oracle DB

Real world...

One Size does not fit all workloads!

HTAP Systems

Solution: Two databases!

Row based OLTP
DB

Column Based
OLAP DW

Extract Transform
Load Tuples

Problems?

Problems

Double the work!

The OLAP DW is lagging behind OLTP DB

Hybrid Database model! Aka Hybrid Transactional
Analytical Processing

One Database
Storing both Rows and Columns!

Ok but how?

The Flexible Storage Model (FSM)

Performance of FSM on Hybrid and Read only
workloads

Advantage

1 Database; Two Systems!

Everyone wins!

Problems?

Problems part 2

One Database, several execution engines

Paper proposal: Adaptive HTAP!

One
Database Storing both Rows and

Columns!

Plus….

Abstraction of Data storage
format

Adaptivity of storage
formats

Now we are getting

somewhere! But How?

Abstraction: Tile Based Architecture

Operators

Bridge Operators Convert Tiles to Physical or
Logical

Metadata Operators - Mutate Logical tiles
meta data

Mutators- Mutate Logical tiles

Pipeline Breakers - Force completion of
themselves before query plan parent operation
can begin.

Benefits of the Tile Architecture

Vectorized Processing

Flexible Materialization

Caching Behavior

Adaptivity:Layout Reorganization

Query monitoring

Partitioning Algorithm

Background or on the spot reorganization

Query monitoring

Lightweight

Per Table

To optimize layout
 Where clause and Select Clause attributes

Why?

Partitioning Layouts

No good Algorithm...

Solution:

Clustering

Drifting

Clustering

Representative Query : r
j

New Query: Qi

Set of attributes accessed by a Query on a table : SetT (Qi)

Distance formula: Length (Set(Q1) UNION Set(Rj) - Set(Q1) INTERSECTION Set(Rj)) / Length (Set
of attributes in T)

Drifting

Cluster drift with every new addition

Cj = representative Query (updated value)

w= forgetting factor of old tuples (Tunable)

s = number of query samples in the cluster

Co = representative Query (initial value)

Qi = current query being added to cluster

Reorganization!

Sort the Clusters by Query Plan cost

Highest Query plan cost, First served

Workload changes so the Clusters change,
so the physical tiles change

When to Reorganize? pt.2

Amortized vs on the spot reorganization

Only cold tuples

Experiments

System

Adapt Benchmark

Results

System

DBMS: Peloton (with paper’s additions)

Server: Dual Socket Intel Xeon E5-4620; Running Ubuntu 14.04 (64-bit)

CPUs in Sockets: Eight 2.6GHz cores

RAM: 128 GB of DRAM

L3 cache: 20 MB

ADAPT Benchmark

Novel Benchmark

Benchmark is made up of data, organized into tables, and workloads, represented by SQL

Adapt DB

Small table (50 attributes)

Wide table(500 attributes)

10m tuples each (200B, 2KB)

ADAPT Workload

Results (Projections Sanity test)

Results (Selectivity Sanity test)

Results (Adaptivity Sanity test)

Conclusion; Why does this paper even matter?

Further optimized the way HTAP systems organize data

1.Added an abstraction to the Physical Storage

2.Added an subroutine reorganizes layout based on current workload

Much better Performance with a focus on extendability.

Further Work needed...

The tuning factor…

Research isn't settled on best Partitioning Algorithm

References

[1] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the Archipelago between Row-Stores and
Column-Stores for Hybrid Workloads. In Proceedings of the 2016 International Conference on Management of Data
(SIGMOD '16). Association for Computing Machinery, New York, NY, USA, 583–598.
DOI:https://doi.org/10.1145/2882903.2915231

[2]Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. 2014. H2O: a hands-free adaptive store. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data(SIGMOD '14). Association
for Computing Machinery, New York, NY, USA, 1103–1114. DOI:https://doi.org/10.1145/2588555.2610502

https://doi.org/10.1145/2882903.2915231
https://doi.org/10.1145/2588555.2610502

Authors

Andrew Pavlo Joy Arulraj
Prashanth Menon

Appendix A: Partitioning Algorithm
Calculating the optimized partition for
a workload…

Greedy Algorithm must be used.

Appendix B: Results (Horizontal Fragmentation)

Appendix C: Multiversion
Concurrency Control
The control metadata

Pipe Breakers and Metadata operations

Mutators

Bridge Operators

