The TileDB Array Data
Storage Manager
O

Manish Patel
CS 561 - Class 21
April 13, 2021

@ Motivation

e ° Scientific and engineering data — muilti-
dimensional arrays
o Either dense or sparse

Dense Matrix Sparse Matrix

'1§25312973422115 1 1. 13 o] |3
1192'43223321 "ml. |4 |. 2.0
3 |9 [13]|8 |21|17]|4 |2 [1 |4 A s s B (1
7321 2—;187 78 (10 |7 8 |l |= 13 |5 |-

9 |22{3 |9 |8 |71|12]|22|17|3 9 1 .17
13{21|21]9 |2 |a7|1 |81]21]9 13(21]. |9 [2 |47 |1 |81|21(9
21(12(53 12|91 |24 |81 |8 [91]|2

618 33v;1987163 1 |55 o e |] |19]8 |16]. |- |SS
54 |4 |78|24|18 |11 |4 |2 (995 54 (4 |. |. 1.

13 (22|32 |42|9 |15]|9 |22|1 |21 O 3 (b S P O R 26 o 2

https://il.wp.com/cmdlinetips.com/wp-content/uploads/2018/03/Sparse Matrix.png?resize=576%2C324

https://i1.wp.com/cmdlinetips.com/wp-content/uploads/2018/03/Sparse_Matrix.png?resize=576%2C324

@ Motivation (continued)

e ° Difficulty in storing the expansive array data
= Maintaining efficient read and writes
o Need for array data storage management
systems — Efficient data access primitives

@ Current Approaches

o HDEDS: dense array format, grouped into

chunks
= Library in C for storage management tasks
o Datasets: array elements and metadata

= Groups: multiple datasets with Metadata/Atibutes
their own metadata =rl—

99.37,

5
HDF5 Fil
ne T

11011

Group Dataset

https://icmplus.neurosurg.cam.ac.uk/wp-content/u
ploads/2017/10/HDE5 2-1024x0-c-default.ong

https://support.hdfgroup.org/HDF5/doc/H5.intro.html
https://icmplus.neurosurg.cam.ac.uk/wp-content/uploads/2017/10/HDF5_2-1024x0-c-default.png
https://icmplus.neurosurg.cam.ac.uk/wp-content/uploads/2017/10/HDF5_2-1024x0-c-default.png

@ Current Approaches (continued)

® ° Drawbacks of HDF5
o |nefficient for sparse arrays
= Small, random in-place writes/updates
o Drawbacks of Parallel HDF5
= NO concurrent writes to
compressed data
= No variable-length
elements

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0
HDE logo.sva/1200px-HDE _logo.sva.png

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png

@ Current Approaches (continued)

o Need for optimization for random updates
of small blocks

)

o SciDB: array database QSci
= Similar chunking as HDF5
= Reading and updating entire chunks
o ArrayStore
= Optimizing for sparse arrays
= Persisting issues

https://dbdb.io/media/logos/scidb.png.280x250_q85.jpg
https://dbdb.io/media/logos/scidb.png.280x250_q85.jpg

@ Current Approaches (continued)

® ° SciDB
= Shared-nothing architecture

m Parallelized and distributed
= Vertically partitioned chunks

= “No-overwrite” storage
= ACID transactions
m Array-level locking

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf

@ Current Approaches (continued)

® ° Relational databases
= Store non-null elements as records
= Maintaining element indices as columns
= |nefficient for dense arrays

— —

https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-logo.png
https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-logo.png
https://dbdb.io/media/logos/vertica.png

@ TileDB - Overview

@ ° First array storage manager optimized for

dense and sparse arrays
o Elements of arrays organized into

fragments

[tile] DB

https://dbdb.io/media/logos/tiledb.png

@ A Look at Arrays

Dense array Sparse array
4 . _—— columns columns
dimensions
1 2 § 4 1 2 & 4
1 1
YOws YOWS
/ 3 empty 3
cell
domain [1,4] A \4-
tuple of cell (4.4)
<al (int32), a2 (var char)> = <15, pppp>
i >
attributes

Figure 1: The logical array view

Stored in sparse format if some threshold of the cells are empty/null

@ Examples of Uses of Arrays

® ° Imaging Application:
= Dense 2-D array
= Each cell with RGB attributes
o Geo-tagged Tweets:
= Sparse 2-D array
= Geographical coordinates as floats
o Tweets as variable-length char

® Global Cell Order for TileDB

® ° Mapping from multiple dimensions to linear
o Dependent on how each application would
use the data

Q‘E
e
o B
S [
=]
1 &
B
o
33k
ool 71
oRo
EEp
E

n 7' _ 1] <« Define tile extent,
Z ey , / cil .

Lj N 4$ ==+ cell order within space
dE: - =171 tile, and tile order

Figure 2: Global cell orders in dense arrays

@ Data Tiles

® ° Sparse arrays in the same way — empty tiles
o |nstead, group the non-empty cells
o Traverse in the global cell order

Figure 3: Data tiles in sparse arrays

«— Specify a data tile
capacity (e.qg. 2 here),
form minimum bounding
rectangles (MBRS)

Snapshot of batched array updates at given
time

Collectively form the current logical array
Allow for efficient writes

If reads are affected, consolidation is

performed
= Merge fragments into one

@ Fragments (continued)

Fragment #1 Fragment #2 Fragment #3
‘ (dense) (dense) (sparse)
1 2 3 .d 1 2 3 4 1 2 3 4

=W N =
=W N =
=W N

i

Collective logical array view
1 2 3 4

= W N =

Figure 4: Fragment examples

Physical Organization

o Array stored as a directory with subdirectories
for each fragment with files for each attribute
(in global cell order)

o Bookkeeping metadata about MBRs and
bounding coordinates (useful for reads)

il ps S space tile extents: 2x2

3 :i)er li_e' l:cl)]\\'_—lm‘;;t;r tile order: row-major
cell order: row-major cell order: r.ow—major ' Fllgs

1 2 3 4 Files 1. 9 g 4 ~rfor
ez T4]s (binary format) 1 blb = al.

a | bb e | £ | S 678 9 10 I iz Lo
5 G 9 3 a2.tdb [013 610 11 13 14
< | ccc |dddd | = |hhbh a2.tdb [0 13 6 10 11 13 16 20 21 23 26 30 31 33 36| dddd
. R : 'S
3|8 (9 |23 ~ 4 6 a2 var.tdb [a bb ccc dddd e ££ ggg hhhh

< 7 ggg

SRiEn SRR a2_var.tdb [a bb ccc dddd e £f ggg hhhh i 3j kkk 1111 m ..| eze |hhhh =

0|1 | = — — —
RR R o B e 4 5 coords.tdb [1.1 1,2 1,4 2,3 3,1 4,2 3,3 3,4 |

Figure 6: Physical organization of dense fragments Figure 7: Physical organization of sparse fragments

@ READ Operations

® - Buffers allocated to store results
o Challenge of having multiple fragments

o Importance of global cell order
= More efficient operation on single-dimension

@ READ Operations - Dense arrays

Timestamp t1 Timestamp t2 > t1 Timestamp 13 > t2

View at t1

B e

® ° 1) Compute sorted list of

tuples containing:
m start coordinates and
end coordinates
m Afragment D
= |terate through the space tiles
o 2) Retrieve the attribute

values from the fragment files

Row-major: 2, 5,6,4,7,8

Row-major: 2, 17, 18, 4, 19, 20

View at t3

Row-major: 2,17, 21, 4, 22, 20

https://docs.tiledb.com/main/solutions/tiledb-embedded/i
nternal-mechanics/reading

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading
https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading

@ READ Operations - Sparse arrays

® ° Differencesin step .
= |terations on ranges involving minimum
bounding coordinate of a data tile in @
fragment, instead of space tiles
= One of the overlap cases never occurs

@ WRITE Operations

® ° Loading and updating data
o Done in batches

o Forming a new fragment
= Can be initialized as dense or sparse

® WRITE Operations - Dense Fragments

® ° Specify subarray region for fragment
o User fills a buffer for each array attribute in
global cell order
o Appends buffer values into attribute files

Global order

After writing in After writing in After writing in
row-major subarray order col-major subarray order global subarray order

— —

/ // 1 2 3 4 1 2 3 4 1 2 3 4

7| = User buffer contents T 121314 dils o i3 JTiT215 16
I

query query
e 12 3 ... 16 oAslel7]s subarny 22| 6 |20{14 cwbarey 2 (OIS
£, r 4 39 |10]11 (12 33| 7 1115 3019|1013 (|14
™ [1:4,1:4] [1:4,1:4]
4113 |14|15(16 4041 8 |12(16 4411|12|15(16

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_dense_layout.png

WRITE Operations - Sparse Fragments

o 1) Filling buffers with values for non-empty cells
only
o Extra buffer for coordinates of non-empty cells
o 2) Random updates with unsorted cell buffers
o Separate fragments for each write
o Deletions by inserting empty cells

Logical view
First write Second write after both writes

cols cols cols
1 2 3 4 1 2 3 4 1 2 3 4
1 1

312 20 3 |20

Sw NN

Sw N

Sw NN

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_sparse_multiple.png

@ CONSOLIDATE Operation

® ° Forming a single fragment from multiple
o Performed with repeated READ operations
and writing into the output fragment
o TileDB allows for consolidation on only @
subset of fragments

@ CONSOLIDATE Operation (continued)

First fragment Second fragment Consolidated fragment

Empty values

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation

e Parallel Programming

Concurrent reads and writes
= No locking necessary

Thread/process-safety
Atomic reads and writes

Background consolidation
= Locking only needed upon completion

o)

o

(o)

o)

@ Experimental Performance

® ° Competitors:
-« HDF5/Parallel HDF5, SciDB, and Vertica

o System configuration:
o |ntel x86_ 64 platform with a 2.3 GHz 36-core
CPU and 128 GB of RAM, running CentOS6
= 4TB, 7200 rom Western Digital HDD
= 480GB Intel SSD

@ Experimental Performance (continued)

® ° Datasets Used
= Dense arrays:
m Synthetic 2-D arrays with an int attribute
o SpaArse arrays.
m Data collected by National Oceanic and
Atmospheric Administration for ships
m Geographical coordinates as dimensions

@ Experimental Performance (continued)

® Loading Dense Arrays

o

TileDB matches
HDF5 and
outperforms
SciDB by
several orders
of magnitude

. . . 10? . ,
TileDB = TileDB ——=
TileDB+Z TikDB+Z 3
HDF5 —3
SciDB

w

Time (x1000s)
r

-

10"

1 2 4 8 16
Dataset size # Instances

(a) vs. dataset size (HDD) (b) vs. # instances (SSD)

Figure 9: Load performance of dense arrays

@ Experimental Performance (continued)

® Updating Dense Arrays

o TileDB performs
> 2x faster than
HDF5 and > 4x
faster than
SciDB

o Sequential,
fragment-based
writes

108

TikDB ——

"TilkDB 4
g TieDB+Z =1 5 TileDB+Z =1 _|
10 HDF5 == 10 HDF5 =
] SciD8 =
10% SCIDB+Z mm—_] 10* SCIDB+Z m—
$ $ s $S 10°
@ 10° @)
2
g - £ 10
— 10 Lo 1
10
1
10 10°
100 10"
R i e 1 [_{_ -2
10 10
1K 10K 100K) 2 4 8 16
Updates # Instances

(a) vs. # updates (HDD) (b) vs. # instances (SSD)

Figure 10: Random update performance of dense arrays

@ Experimental Performance (continued)

o Reading Dense (Sub)Arrays

o

TileDB either
matches or
outperforms HDF5
and outperforms
SciDB

Scaling with # tiles
Unaffected by
array size

10‘ — 106 TieDB C—3
[oo | S TieDB+Z C—
10° — 10 HDF5 —=1]
—= St HDF5+Z —
102 — 10 SciDE]
ScDB+Z 3 SciDB+Z mmmm
Z 10! = e
2 2 10?
£ 10° = 10"
107" 10°
107 102 =
Tile Par Col 1K 10 100
Subarray type # Tiles
(a) vs. subarray type (HDD) (b) vs. # tiles (HDD)
107 IIIIII — 107 TieDB C—3
s TieDB+Z == & ieDB+Z
10 HDF5 — —{ 10 HDF5 —= —
HDF5+Z —m DF5+Z —
105 - 105 SciDB . _|
Scil — ScDB+Z wmmmm
=10t =10t
§103 $ S $$ §1o3 $$ s$ $s $$ $$
102 — 10? - - - -
N o e .I .I
o o il il on! R
1K oK 100K 1 2 4 8 16
Elements # Instances
(c) vs. #elements (HDD) (d) vs. # instances (SSD)

Figure 11: Subarray performance for dense arrays

@ Experimental Performance (continued)

® ° Number of fragments — consolidation
o Read performance worsens as more

fragments are created
= Efficiency returns after consolidation

= Consolidation time is largely the same

TieDB —
TieDB+Z —

3 4
- 3
£ z
g
| I
1 1+

10 1+100 141K 1C 1410 1+100
Fragments

|
= 4]
e —".]

Fragments

(a) Subarray time (HDD) (b) Consolidation time (HDD)
Figure 12: Effect of # fragments in dense arrays

o

TileDB
outperforms
SciDB by more
than an order
of magnitude

@ Experimental Performance (continued)

® Loading Sparse Arrays

107 10% — . v : .
TeD2 — TieDE
c TieDB.Z TieDB.Z =3
10 venica.Z = Vertica:Z =1
SCDS m— SciDE
10° 30
B10t = $ $ $ $
: T
£10° E
2
2 102
109 10
6GB 12GB 24GB 1 2 4 8 16
Dataset sze

Instances

(a) vs. dataset size (HDD) (b) vs. # instances (SSD)

Figure 13: Load performance of sparse arrays

Reading Sparse (Sub)Arrays

o TileDB is 1-2 orders
of magnitude faster
than SciDB and
essentially matches

Vertica

o Favorable scaling

@ Experimental Performance (continued)

Result size

0® 10*
1 - Teos
4 .z st TeDB.Z —=
10 Verica.Z —= 10 fica.Z —=
3 i SciDE
L) 102
2
= 10 =i
= h = 10
g 10 S
€
2 =T —
10’
1 10" —
il
10°
10K

RRRRRR ize

(a) DQ vs. result size (HDD) (b) SQ vs # result size (HDD)

: ﬂ’—rﬂ—m_" |
10° S E3 S rr
1 2 4 8

Instances

5
102
10'
10° $
1 2

_|
$ I $ L |
4 8 16

Instances

(c) DQ vs. # instances (SSD) (d) SQ vs. # instances (SSD)

Figure 14: Subarray performance for sparse arrays

TileDB optimized for dense and sparse arrays
Much more efficient random writes than
HDF5, and similar read performance (dense)
Far outperforming SciDB for both types
Similar performance as Vertica (sparse)
Optimal scaling for dataset size and level of
parallel programming

@ Strengths and Weaknesses of the Paper

® Strengths:

o

Very thorough
experimentation on all
types of operations
and both types of
arrays

Useful implementation
of visuals for
characteristics of
TileDB set-up

Weaknesses:

> Lacking in visual
depictions for the
operations
= Hard to
comprehend from
the lengthy written
explanations

@ Future Work/Improvements

@ - Still an active project —» www.tiledb.com
s Implemented in C++

o Possible implementation for storing

matrices and performing matrix operations
o Array computations

http://www.tiledb.com

e TileDB GitHub Repo

= README.md

° [tile] DB

Azure Pipelines |succeeded || Anaconda downloads [iM total

The Universal Storage Engine

TileDB is a powerful engine for storing and accessing dense and sparse multi-dimensional arrays, which can help you
model any complex data efficiently. It is an embeddable C++ library that works on Linux, macOS, and Windows. It is
open-sourced under the permissive MIT License, developed and maintained by TileDB, Inc. To distinguish this project
from other TileDB offerings, we often refer to it as TileDB Embedded.

TileDB includes the following features:

Support for both dense and sparse arrays

Support for dataframes and key-value stores (via sparse arrays)

Cloud storage (AWS S3, Google Cloud Storage, Azure Blob Storage)
Chunked (tiled) arrays

Multiple compression, encryption and checksum filters

Fully multi-threaded implementation
Parallel 10

Data versioning (rapid updates, time traveling)

Array metadata

Array groups

Numerous APIs on top of the C++ library

Numerous integrations (Spark, Dask, MariaDB, GDAL, etc.)
You can use TileDB to store data in a variety of applications, such as Genomics, Geospatial, Finance and more. The

power of TlleDB stems from the fact that any data can be modeled efficiently as either a dense or a sparse multi-

A DA R R B B S L A Ao A B e R e O R S S S R R SR s

https://github.com/TileDB-Inc/TileDB

https://github.com/TileDB-Inc/TileDB

References

Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy
Mattson. 2016. The TileDB array data storage manager. Proc. VLDB Endow.
10, 4 (November 2016), 349-360. DOI:
https://doi.org/10.14778/3025111.3025117

