
The TileDB Array Data
Storage Manager

Manish Patel
CS 561 - Class 21
April 13, 2021

Motivation

◦ Scientific and engineering data → multi-
dimensional arrays

◦ Either dense or sparse

https://i1.wp.com/cmdlinetips.com/wp-content/uploads/2018/03/Sparse_Matrix.png?resize=576%2C324

https://i1.wp.com/cmdlinetips.com/wp-content/uploads/2018/03/Sparse_Matrix.png?resize=576%2C324

Motivation (continued)

◦ Difficulty in storing the expansive array data
▫ Maintaining efficient read and writes

◦ Need for array data storage management
systems → Efficient data access primitives

Current Approaches

◦ HDF5: dense array format, grouped into
chunks
▫ Library in C for storage management tasks
▫ Datasets: array elements and metadata
▫ Groups: multiple datasets with

their own metadata

https://icmplus.neurosurg.cam.ac.uk/wp-content/u
ploads/2017/10/HDF5_2-1024x0-c-default.png

https://support.hdfgroup.org/HDF5/doc/H5.intro.html
https://icmplus.neurosurg.cam.ac.uk/wp-content/uploads/2017/10/HDF5_2-1024x0-c-default.png
https://icmplus.neurosurg.cam.ac.uk/wp-content/uploads/2017/10/HDF5_2-1024x0-c-default.png

Current Approaches (continued)

◦ Drawbacks of HDF5
▫ Inefficient for sparse arrays
▫ Small, random in-place writes/updates

◦ Drawbacks of Parallel HDF5
▫ No concurrent writes to

compressed data
▫ No variable-length

elements
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/

HDF_logo.svg/1200px-HDF_logo.svg.png

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png

Current Approaches (continued)

◦ Need for optimization for random updates
of small blocks

◦ SciDB: array database
▫ Similar chunking as HDF5
▫ Reading and updating entire chunks

◦ ArrayStore
▫ Optimizing for sparse arrays
▫ Persisting issues

https://dbdb.io/media/logos
/scidb.png.280x250_q85.jpg

https://dbdb.io/media/logos/scidb.png.280x250_q85.jpg
https://dbdb.io/media/logos/scidb.png.280x250_q85.jpg

◦ SciDB
▫ Shared-nothing architecture

■ Parallelized and distributed
▫ Vertically partitioned chunks
▫ “No-overwrite” storage
▫ ACID transactions

■ Array-level locking

Current Approaches (continued)

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf

Current Approaches (continued)

◦ Relational databases
▫ Store non-null elements as records
▫ Maintaining element indices as columns
▫ Inefficient for dense arrays

https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-lo
go.png https://dbdb.io/media/logos/vertica.png

https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-logo.png
https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-logo.png
https://dbdb.io/media/logos/vertica.png

TileDB - Overview

◦ First array storage manager optimized for
dense and sparse arrays

◦ Elements of arrays organized into
fragments

https://dbdb.io/media/logos/tiledb.png

https://dbdb.io/media/logos/tiledb.png

◦ Stored in sparse format if some threshold of the cells are empty/null

A Look at Arrays

Examples of Uses of Arrays

◦ Imaging Application:
▫ Dense 2-D array
▫ Each cell with RGB attributes

◦ Geo-tagged Tweets:
▫ Sparse 2-D array
▫ Geographical coordinates as floats
▫ Tweets as variable-length char

Global Cell Order for TileDB

◦ Mapping from multiple dimensions to linear
◦ Dependent on how each application would

use the data

← Define tile extent,
cell order within space
tile, and tile order

◦ Sparse arrays in the same way → empty tiles
◦ Instead, group the non-empty cells
◦ Traverse in the global cell order

Data Tiles

← Specify a data tile
capacity (e.g. 2 here),
form minimum bounding
rectangles (MBRs)

Fragments

◦ Snapshot of batched array updates at given
time

◦ Collectively form the current logical array
◦ Allow for efficient writes
◦ If reads are affected, consolidation is

performed
▫ Merge fragments into one

Fragments (continued)

Physical Organization

◦ Array stored as a directory with subdirectories
for each fragment with files for each attribute
(in global cell order)

◦ Bookkeeping metadata about MBRs and
bounding coordinates (useful for reads)

READ Operations

◦ Buffers allocated to store results
◦ Challenge of having multiple fragments
◦ Importance of global cell order

▫ More efficient operation on single-dimension

READ Operations - Dense arrays

◦ 1) Compute sorted list of
tuples containing:

■ start coordinates and
end coordinates

■ A fragment ID
▫ Iterate through the space tiles

◦ 2) Retrieve the attribute
values from the fragment files

https://docs.tiledb.com/main/solutions/tiledb-embedded/i
nternal-mechanics/reading

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading
https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading

READ Operations - Sparse arrays

◦ Differences in step 1:
▫ Iterations on ranges involving minimum

bounding coordinate of a data tile in a
fragment, instead of space tiles

▫ One of the overlap cases never occurs

WRITE Operations

◦ Loading and updating data
◦ Done in batches
◦ Forming a new fragment

▫ Can be initialized as dense or sparse

WRITE Operations - Dense Fragments

◦ Specify subarray region for fragment
◦ User fills a buffer for each array attribute in

global cell order
◦ Appends buffer values into attribute files

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_dense_layout.png

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_dense_layout.png

WRITE Operations - Sparse Fragments

◦ 1) Filling buffers with values for non-empty cells
only
▫ Extra buffer for coordinates of non-empty cells

◦ 2) Random updates with unsorted cell buffers
▫ Separate fragments for each write

◦ Deletions by inserting empty cells

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_sparse_multiple.png

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_sparse_multiple.png

CONSOLIDATE Operation

◦ Forming a single fragment from multiple
◦ Performed with repeated READ operations

and writing into the output fragment
◦ TileDB allows for consolidation on only a

subset of fragments

CONSOLIDATE Operation (continued)

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation

Parallel Programming

◦ Concurrent reads and writes
▫ No locking necessary

◦ Thread/process-safety
◦ Atomic reads and writes
◦ Background consolidation

▫ Locking only needed upon completion

Experimental Performance

◦ Competitors:
▫ HDF5/Parallel HDF5, SciDB, and Vertica

◦ System configuration:
▫ Intel x86_64 platform with a 2.3 GHz 36-core

CPU and 128 GB of RAM, running CentOS6
▫ 4TB, 7200 rpm Western Digital HDD
▫ 480GB Intel SSD

Experimental Performance (continued)

◦ Datasets Used
▫ Dense arrays:

■ Synthetic 2-D arrays with an int attribute
▫ Sparse arrays:

■ Data collected by National Oceanic and
Atmospheric Administration for ships

■ Geographical coordinates as dimensions

Experimental Performance (continued)

Loading Dense Arrays

◦ TileDB matches
HDF5 and
outperforms
SciDB by
several orders
of magnitude

Experimental Performance (continued)

Updating Dense Arrays

◦ TileDB performs
> 2x faster than
HDF5 and > 4x
faster than
SciDB

◦ Sequential,
fragment-based
writes

Experimental Performance (continued)

Reading Dense (Sub)Arrays

◦ TileDB either
matches or
outperforms HDF5
and outperforms
SciDB

◦ Scaling with # tiles
◦ Unaffected by

array size

Experimental Performance (continued)

◦ Number of fragments → consolidation
▫ Read performance worsens as more

fragments are created
▫ Efficiency returns after consolidation
▫ Consolidation time is largely the same

Experimental Performance (continued)

Loading Sparse Arrays

◦ TileDB
outperforms
SciDB by more
than an order
of magnitude

Experimental Performance (continued)

Reading Sparse (Sub)Arrays

◦ TileDB is 1-2 orders
of magnitude faster
than SciDB and
essentially matches
Vertica

◦ Favorable scaling

Conclusion

◦ TileDB optimized for dense and sparse arrays
◦ Much more efficient random writes than

HDF5, and similar read performance (dense)
◦ Far outperforming SciDB for both types
◦ Similar performance as Vertica (sparse)
◦ Optimal scaling for dataset size and level of

parallel programming

Strengths and Weaknesses of the Paper

Strengths:
◦ Very thorough

experimentation on all
types of operations
and both types of
arrays

◦ Useful implementation
of visuals for
characteristics of
TileDB set-up

Weaknesses:
◦ Lacking in visual

depictions for the
operations
▫ Hard to

comprehend from
the lengthy written
explanations

Future Work/Improvements

◦ Still an active project → www.tiledb.com
▫ Implemented in C++

◦ Possible implementation for storing
matrices and performing matrix operations
▫ Array computations

http://www.tiledb.com

TileDB GitHub Repo

https://github.com/TileDB-Inc/TileDB

https://github.com/TileDB-Inc/TileDB

References

Stavros Papadopoulos, Kushal Datta, Samuel Madden, and Timothy
Mattson. 2016. The TileDB array data storage manager. Proc. VLDB Endow.
10, 4 (November 2016), 349–360. DOI:
https://doi.org/10.14778/3025111.3025117

