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@ Motivation

e ° Scientific and engineering data — muilti-
dimensional arrays
o Either dense or sparse
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@ Motivation (continued)

e ° Difficulty in storing the expansive array data
= Maintaining efficient read and writes
o Need for array data storage management
systems — Efficient data access primitives



@ Current Approaches

o HDEDS: dense array format, grouped into

chunks
= Library in C for storage management tasks
o Datasets: array elements and metadata

= Groups: multiple datasets with Metadata/Atibutes
their own metadata =rl—
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@ Current Approaches (continued)

® ° Drawbacks of HDF5
o |nefficient for sparse arrays
= Small, random in-place writes/updates
o Drawbacks of Parallel HDF5
= NO concurrent writes to
compressed data
= No variable-length
elements

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0
HDE logo.sva/1200px-HDE _logo.sva.png



https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png

@ Current Approaches (continued)

o Need for optimization for random updates
of small blocks

)

o SciDB: array database QSci
= Similar chunking as HDF5
= Reading and updating entire chunks
o ArrayStore
= Optimizing for sparse arrays
= Persisting issues
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@ Current Approaches (continued)

® ° SciDB
= Shared-nothing architecture

m Parallelized and distributed
= Vertically partitioned chunks

= “No-overwrite” storage
= ACID transactions
m Array-level locking

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf
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@ Current Approaches (continued)

® ° Relational databases
= Store non-null elements as records
= Maintaining element indices as columns
= |nefficient for dense arrays

— —
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@ TileDB - Overview

@ ° First array storage manager optimized for

dense and sparse arrays
o Elements of arrays organized into

fragments

[tile] DB
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@ A Look at Arrays
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Figure 1: The logical array view

Stored in sparse format if some threshold of the cells are empty/null



@ Examples of Uses of Arrays

® ° Imaging Application:
= Dense 2-D array
= Each cell with RGB attributes
o Geo-tagged Tweets:
= Sparse 2-D array
= Geographical coordinates as floats
o Tweets as variable-length char



® Global Cell Order for TileDB

® ° Mapping from multiple dimensions to linear
o Dependent on how each application would
use the data
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Figure 2: Global cell orders in dense arrays



@ Data Tiles

® ° Sparse arrays in the same way — empty tiles
o |nstead, group the non-empty cells
o Traverse in the global cell order

Figure 3: Data tiles in sparse arrays

«— Specify a data tile
capacity (e.qg. 2 here),
form minimum bounding
rectangles (MBRS)



Snapshot of batched array updates at given
time

Collectively form the current logical array
Allow for efficient writes

If reads are affected, consolidation is

performed
= Merge fragments into one




@ Fragments (continued)
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Figure 4: Fragment examples




Physical Organization

o Array stored as a directory with subdirectories
for each fragment with files for each attribute
(in global cell order)

o Bookkeeping metadata about MBRs and
bounding coordinates (useful for reads)
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@ READ Operations

® - Buffers allocated to store results
o Challenge of having multiple fragments

o Importance of global cell order
= More efficient operation on single-dimension



@ READ Operations - Dense arrays

Timestamp t1 Timestamp t2 > t1 Timestamp 13 > t2

View at t1

B e

® ° 1) Compute sorted list of

tuples containing:
m start coordinates and
end coordinates
m Afragment D
= |terate through the space tiles
o 2) Retrieve the attribute

values from the fragment files

Row-major: 2, 5,6,4,7,8

Row-major: 2, 17, 18, 4, 19, 20

View at t3

Row-major: 2,17, 21, 4, 22, 20

https://docs.tiledb.com/main/solutions/tiledb-embedded/i
nternal-mechanics/reading
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https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading

@ READ Operations - Sparse arrays

® ° Differencesin step .
= |terations on ranges involving minimum
bounding coordinate of a data tile in @
fragment, instead of space tiles
= One of the overlap cases never occurs



@ WRITE Operations

® ° Loading and updating data
o Done in batches

o Forming a new fragment
= Can be initialized as dense or sparse




® WRITE Operations - Dense Fragments

® ° Specify subarray region for fragment
o User fills a buffer for each array attribute in
global cell order
o Appends buffer values into attribute files
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https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_dense_layout.png

WRITE Operations - Sparse Fragments

o 1) Filling buffers with values for non-empty cells
only
o Extra buffer for coordinates of non-empty cells
o 2) Random updates with unsorted cell buffers
o Separate fragments for each write
o Deletions by inserting empty cells

Logical view
First write Second write after both writes

cols cols cols
1 2 3 4 1 2 3 4 1 2 3 4
1 1

312 20 3 |20
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@ CONSOLIDATE Operation

® ° Forming a single fragment from multiple
o Performed with repeated READ operations
and writing into the output fragment
o TileDB allows for consolidation on only @
subset of fragments



@ CONSOLIDATE Operation (continued)

First fragment Second fragment Consolidated fragment

Empty values

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation



https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation

e Parallel Programming

Concurrent reads and writes
= No locking necessary

Thread/process-safety
Atomic reads and writes

Background consolidation
= Locking only needed upon completion

o)

o

(o)

o)



@ Experimental Performance

® ° Competitors:
-« HDF5/Parallel HDF5, SciDB, and Vertica

o System configuration:
o |ntel x86_ 64 platform with a 2.3 GHz 36-core
CPU and 128 GB of RAM, running CentOS6
= 4TB, 7200 rom Western Digital HDD
= 480GB Intel SSD



@ Experimental Performance (continued)

® ° Datasets Used
= Dense arrays:
m Synthetic 2-D arrays with an int attribute
o SpaArse arrays.
m Data collected by National Oceanic and
Atmospheric Administration for ships
m Geographical coordinates as dimensions



@ Experimental Performance (continued)

® Loading Dense Arrays

o

TileDB matches
HDF5 and
outperforms
SciDB by
several orders
of magnitude
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Figure 9: Load performance of dense arrays



@ Experimental Performance (continued)

® Updating Dense Arrays

o TileDB performs
> 2x faster than
HDF5 and > 4x
faster than
SciDB

o Sequential,
fragment-based
writes
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Figure 10: Random update performance of dense arrays



@ Experimental Performance (continued)

o Reading Dense (Sub)Arrays

o

TileDB either
matches or
outperforms HDF5
and outperforms
SciDB

Scaling with # tiles
Unaffected by
array size
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Figure 11: Subarray performance for dense arrays



@ Experimental Performance (continued)

® ° Number of fragments — consolidation
o Read performance worsens as more

fragments are created
= Efficiency returns after consolidation

= Consolidation time is largely the same
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o

TileDB
outperforms
SciDB by more
than an order
of magnitude

@ Experimental Performance (continued)

® Loading Sparse Arrays
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Figure 13: Load performance of sparse arrays




Reading Sparse (Sub)Arrays

o TileDB is 1-2 orders
of magnitude faster
than SciDB and
essentially matches

Vertica

o Favorable scaling

@ Experimental Performance (continued)

Result size

0® 10*
1 - Teos
4 .z st TeDB.Z —=
10 Verica.Z —= 10 fica.Z —=
3 i SciDE
L) 102
2
= 10 =i
= h = 10
g 10 S
€
2 =T —
10’
1 10" —
il
10°
10K

RRRRRR ize

(a) DQ vs. result size (HDD) (b) SQ vs # result size (HDD)

: ﬂ’—rﬂ—m_" |
10° S E3 S rr
1 2 4 8

# Instances

5
102
10'
10° $
1 2

_|
$ I $ L |
4 8 16

Instances

(c) DQ vs. # instances (SSD) (d) SQ vs. # instances (SSD)

Figure 14: Subarray performance for sparse arrays



TileDB optimized for dense and sparse arrays
Much more efficient random writes than
HDF5, and similar read performance (dense)
Far outperforming SciDB for both types
Similar performance as Vertica (sparse)
Optimal scaling for dataset size and level of
parallel programming



@ Strengths and Weaknesses of the Paper

® Strengths:

o

Very thorough
experimentation on all
types of operations
and both types of
arrays

Useful implementation
of visuals for
characteristics of
TileDB set-up

Weaknesses:

> Lacking in visual
depictions for the
operations
= Hard to
comprehend from
the lengthy written
explanations



@ Future Work/Improvements

@ - Still an active project —» www.tiledb.com
s Implemented in C++

o Possible implementation for storing

matrices and performing matrix operations
o Array computations



http://www.tiledb.com

e TileDB GitHub Repo

= README.md

° [tile] DB

# Azure Pipelines |succeeded || Anaconda downloads [iM total

The Universal Storage Engine

TileDB is a powerful engine for storing and accessing dense and sparse multi-dimensional arrays, which can help you
model any complex data efficiently. It is an embeddable C++ library that works on Linux, macOS, and Windows. It is
open-sourced under the permissive MIT License, developed and maintained by TileDB, Inc. To distinguish this project
from other TileDB offerings, we often refer to it as TileDB Embedded.

TileDB includes the following features:

Support for both dense and sparse arrays

Support for dataframes and key-value stores (via sparse arrays)

Cloud storage (AWS S3, Google Cloud Storage, Azure Blob Storage)
Chunked (tiled) arrays

Multiple compression, encryption and checksum filters

Fully multi-threaded implementation
Parallel 10

Data versioning (rapid updates, time traveling)

Array metadata

Array groups

Numerous APIs on top of the C++ library

Numerous integrations (Spark, Dask, MariaDB, GDAL, etc.)
You can use TileDB to store data in a variety of applications, such as Genomics, Geospatial, Finance and more. The

power of TlleDB stems from the fact that any data can be modeled efficiently as either a dense or a sparse multi-
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https://github.com/TileDB-Inc/TileDB



https://github.com/TileDB-Inc/TileDB
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