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Motivation

◦ Scientific and engineering data → multi- 
dimensional arrays

◦ Either dense or sparse 

https://i1.wp.com/cmdlinetips.com/wp-content/uploads/2018/03/Sparse_Matrix.png?resize=576%2C324 

https://i1.wp.com/cmdlinetips.com/wp-content/uploads/2018/03/Sparse_Matrix.png?resize=576%2C324


Motivation (continued)

◦ Difficulty in storing the expansive array data 
▫ Maintaining efficient read and writes

◦ Need for array data storage management 
systems → Efficient data access primitives



Current Approaches

◦ HDF5: dense array format, grouped into 
chunks
▫ Library in C for storage management tasks
▫ Datasets: array elements and metadata
▫ Groups: multiple datasets with                        

their own metadata

https://icmplus.neurosurg.cam.ac.uk/wp-content/u
ploads/2017/10/HDF5_2-1024x0-c-default.png 

https://support.hdfgroup.org/HDF5/doc/H5.intro.html
https://icmplus.neurosurg.cam.ac.uk/wp-content/uploads/2017/10/HDF5_2-1024x0-c-default.png
https://icmplus.neurosurg.cam.ac.uk/wp-content/uploads/2017/10/HDF5_2-1024x0-c-default.png


Current Approaches (continued)

◦ Drawbacks of HDF5 
▫ Inefficient for sparse arrays
▫ Small, random in-place writes/updates

◦ Drawbacks of Parallel HDF5
▫ No concurrent writes to                        

compressed data
▫ No variable-length                                

elements
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/

HDF_logo.svg/1200px-HDF_logo.svg.png 

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/a/a0/HDF_logo.svg/1200px-HDF_logo.svg.png


Current Approaches (continued)

◦ Need for optimization for random updates 
of small blocks 

◦ SciDB: array database
▫ Similar chunking as HDF5
▫ Reading and updating entire chunks

◦ ArrayStore
▫ Optimizing for sparse arrays
▫ Persisting issues

https://dbdb.io/media/logos
/scidb.png.280x250_q85.jpg 

https://dbdb.io/media/logos/scidb.png.280x250_q85.jpg
https://dbdb.io/media/logos/scidb.png.280x250_q85.jpg


◦ SciDB
▫ Shared-nothing architecture

■ Parallelized and distributed 
▫ Vertically partitioned chunks
▫ “No-overwrite” storage
▫ ACID transactions

■ Array-level locking 

Current Approaches (continued)

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf 

https://www.nersc.gov/assets/Uploads/scidb-userguide-12.3.pdf


Current Approaches (continued)

◦ Relational databases
▫ Store non-null elements as records
▫ Maintaining element indices as columns 
▫ Inefficient for dense arrays

https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-lo
go.png https://dbdb.io/media/logos/vertica.png 

https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-logo.png
https://upload.wikimedia.org/wikipedia/en/b/b9/Monetdb-logo.png
https://dbdb.io/media/logos/vertica.png


TileDB - Overview

◦ First array storage manager optimized for 
dense and sparse arrays

◦ Elements of arrays organized into 
fragments

https://dbdb.io/media/logos/tiledb.png 

https://dbdb.io/media/logos/tiledb.png


◦ Stored in sparse format if some threshold of the cells are empty/null

A Look at Arrays 



Examples of Uses of Arrays

◦ Imaging Application:
▫ Dense 2-D array
▫ Each cell with RGB attributes

◦ Geo-tagged Tweets:
▫ Sparse 2-D array
▫ Geographical coordinates as floats
▫ Tweets as variable-length char



Global Cell Order for TileDB

◦ Mapping from multiple dimensions to linear
◦ Dependent on how each application would 

use the data

← Define tile extent, 
cell order within space 
tile, and tile order



◦ Sparse arrays in the same way → empty tiles 
◦ Instead, group the non-empty cells
◦ Traverse in the global cell order 

Data Tiles

← Specify a data tile 
capacity (e.g. 2 here), 
form minimum bounding 
rectangles (MBRs)



Fragments

◦ Snapshot of batched array updates at given 
time 

◦ Collectively form the current logical array
◦ Allow for efficient writes
◦ If reads are affected, consolidation is 

performed
▫ Merge fragments into one 



Fragments (continued)



Physical Organization

◦ Array stored as a directory with subdirectories 
for each fragment with files for each attribute 
(in global cell order)

◦ Bookkeeping metadata about MBRs and 
bounding coordinates (useful for reads)



READ Operations 

◦ Buffers allocated to store results
◦ Challenge of having multiple fragments 
◦ Importance of global cell order

▫ More efficient operation on single-dimension



READ Operations - Dense arrays

◦ 1) Compute sorted list of                            
tuples containing:

■ start coordinates and                                   
end coordinates

■ A fragment ID
▫ Iterate through the space tiles

◦ 2) Retrieve the attribute                            
values from the fragment files

https://docs.tiledb.com/main/solutions/tiledb-embedded/i
nternal-mechanics/reading 

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading
https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/reading


READ Operations - Sparse arrays

◦ Differences in step 1:
▫ Iterations on ranges involving minimum 

bounding coordinate of a data tile in a 
fragment, instead of space tiles

▫ One of the overlap cases never occurs  



WRITE Operations

◦ Loading and updating data
◦ Done in batches 
◦ Forming a new fragment

▫ Can be initialized as dense or sparse



WRITE Operations - Dense Fragments

◦ Specify subarray region for fragment
◦ User fills a buffer for each array attribute in 

global cell order
◦ Appends buffer values into attribute files

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_dense_layout.png 

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_dense_layout.png


WRITE Operations - Sparse Fragments

◦ 1) Filling buffers with values for non-empty cells 
only
▫ Extra buffer for coordinates of non-empty cells

◦ 2) Random updates with unsorted cell buffers 
▫ Separate fragments for each write 

◦ Deletions by inserting empty cells 

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_sparse_multiple.png 

https://tiledb-inc-tiledb.readthedocs-hosted.com/en/1.6.3/_images/writing_sparse_multiple.png


CONSOLIDATE Operation

◦ Forming a single fragment from multiple
◦ Performed with repeated READ operations 

and writing into the output fragment
◦ TileDB allows for consolidation on only a 

subset of fragments 



CONSOLIDATE Operation (continued)

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation 

https://docs.tiledb.com/main/solutions/tiledb-embedded/internal-mechanics/consolidation


Parallel Programming

◦ Concurrent reads and writes 
▫ No locking necessary

◦ Thread/process-safety
◦ Atomic reads and writes
◦ Background consolidation 

▫ Locking only needed upon completion



Experimental Performance

◦ Competitors:
▫ HDF5/Parallel HDF5, SciDB, and Vertica

◦ System configuration:
▫ Intel x86_64 platform with a 2.3 GHz 36-core 

CPU and 128 GB of RAM, running CentOS6
▫ 4TB, 7200 rpm Western Digital HDD
▫ 480GB Intel SSD



Experimental Performance (continued)

◦ Datasets Used
▫ Dense arrays:

■ Synthetic 2-D arrays with an int attribute
▫ Sparse arrays:

■ Data collected by National Oceanic and 
Atmospheric Administration for ships

■ Geographical coordinates as dimensions



Experimental Performance (continued)

Loading Dense Arrays

◦ TileDB matches 
HDF5 and 
outperforms 
SciDB by 
several orders 
of magnitude



Experimental Performance (continued)

Updating Dense Arrays

◦ TileDB performs 
> 2x faster than 
HDF5 and > 4x 
faster than 
SciDB 

◦ Sequential, 
fragment-based 
writes



Experimental Performance (continued)

Reading Dense (Sub)Arrays

◦ TileDB either 
matches or 
outperforms HDF5 
and outperforms 
SciDB

◦ Scaling with # tiles
◦ Unaffected by 

array size



Experimental Performance (continued)

◦ Number of fragments → consolidation
▫ Read performance worsens as more 

fragments are created
▫ Efficiency returns after consolidation
▫ Consolidation time is largely the same 



Experimental Performance (continued)

Loading Sparse Arrays

◦ TileDB 
outperforms 
SciDB by more 
than an order 
of magnitude



Experimental Performance (continued)

Reading Sparse (Sub)Arrays

◦ TileDB is 1-2 orders 
of magnitude faster 
than SciDB and 
essentially matches 
Vertica

◦ Favorable scaling 



Conclusion

◦ TileDB optimized for dense and sparse arrays
◦ Much more efficient random writes than 

HDF5, and similar read performance (dense)
◦ Far outperforming SciDB for both types
◦ Similar performance as Vertica (sparse)
◦ Optimal scaling for dataset size and level of 

parallel programming



Strengths and Weaknesses of the Paper

Strengths:
◦ Very thorough 

experimentation on all 
types of operations 
and both types of 
arrays

◦ Useful implementation 
of visuals for 
characteristics of 
TileDB set-up

Weaknesses:
◦ Lacking in visual 

depictions for the 
operations 
▫ Hard to 

comprehend from 
the lengthy written 
explanations 



Future Work/Improvements

◦ Still an active project → www.tiledb.com 
▫ Implemented in C++

◦ Possible implementation for storing 
matrices and performing matrix operations
▫ Array computations

http://www.tiledb.com


TileDB GitHub Repo

https://github.com/TileDB-Inc/TileDB 

https://github.com/TileDB-Inc/TileDB
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