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NVMM Non-Volatile Main Memory
n Data can be retained after power off
n Data is trapped in the floating gate 



B+ tree



Motivation
n Limitations of DRAM technology
n Increasing capacity of main memory



Why NVMM?
n physical mechanisms are amenable to much smaller feature 

sizes
n support byte-addressable reads and writes with performance 

close to that of DRAM
n lower power than DRAM due to non-volatility



Challenges
n B+ tree in NVMM
n Data structure inconsistency



Solutions
n PCM-friendly B+ tree
n clflush & mfence
n Logging & shadowing



PCM-friendly B+ tree



Clflush & Mfence
n X86 processor operations to control cache lines
n clflush

n clflush invalidates the cache line that contains the address from all levels 
of caches, and broadcasts the invalidation to all CPU cores in the system

n mfence
n mfence guarantees that all memory reads and memory writes issued 

before the mfence in program order



Clflush & Mfence



Performance Analysis Metrices



Undo Redo Logging

n Record REDO and UNDO information for every update in a log
n Sequential write to a log (put it on a separate disk)
n Minimal information written to log, multiple updates fit in a single log page

n Log : An ordered list of REDO/UNDO actions
n Log record contains <XID, pageID, offset, length, old data, new data>
n Additional control information



Undo Redo Logging

Nw = 4m + 12 
Nclf = m + 3 
Nmf = m + 3
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Shadowing
n Short-Circuit Shadowing
n NVM supports 8-byte atomic write
n Proposed by Condit et al.



Short-Circuit Shadowing
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Shadowing

Nw = 2m + 11 
Nclf = 0.25m + 2.5 
Nmf = 2



Write-Atomic B+ tree
n Atomic write to commit all changes
n Minimize the movement of index entries
n Slot array + bitmap



Write atomic B+ tree
n Insertion
n Deletion
n Search



Write atomic B+ tree Insertion



Comparison Insertion

Logging Shadowing wB+-Tree

Nw = 4m + 12 
Nclf = m + 3 
Nmf = m + 3

Nw = 2m + 11 
Nclf = 0.25m + 2.5 
Nmf = 2

Nw = 3
Nclf = 2
Nmf = 2



Comparison



Experiment 
n Setup

n Real machine modeling DRAM-like fast NVMM
n Simulation modeling PCM-based NVMM



Experiment Simulation
n Undo-Redo logging incurs drastic 6.6–13.7x 

slowdowns for B+-Trees and 2.7–12.6x 
slowdowns for PCM-friendly B+-Trees.

n Shadowing incurs 2.1–7.8x slowdowns 
n wB+-Trees achieve a factor of 4.2–27.1x 

improvement over the slowest previous 
persistent solution

n The best wB+-Tree result is 1.5–2.4x better 
than the fastest previous persistent solution

n wB+-Tree w/ bmp-leaf achieves slightly 
better insertion and deletion performance 
than wB+-Tree, but sees worse search 
performance.



Experiment Real Machine

n wB+-Tree achieves similar search 
performance compared to the baseline 
main-memory non-persistent B+-Trees

n undo-redo logging incurs 1.6–11.8x 
slowdowns

n Shadowing incurs 1.7–3.3x slowdowns
n The wB+-Trees achieve 2.1–8.8x 

improvement over the slowest previous 
persistent solution,and the best wB+-Tree 
result is 1.2–1.6x better than the best 
previous persistent solution in each 
insertion or deletion



Conclusion
n Traditional approaches(logging, shadowing) incur drastic writes 

and cache line flush
n NVM write plays a major role in PCM based NVMM
n Cache line flush is the major part for DRAM-like NVMM
n Write atomic B-trees has better insertion and deletion 

performance, while achieving good search performance
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