
Persistent B+Trees in NonVolatile Main Memory

CS 561 2021 spring

Chen-Wei Weng

U58151415

Outline
n Introduction
n Motivation
n Challenges
n Performance analysis
n wB+ tree
n Comparison
n Conclusion

NVMM Non-Volatile Main Memory
n Data can be retained after power off
n Data is trapped in the floating gate

B+ tree

Motivation
n Limitations of DRAM technology
n Increasing capacity of main memory

Why NVMM?
n physical mechanisms are amenable to much smaller feature

sizes
n support byte-addressable reads and writes with performance

close to that of DRAM
n lower power than DRAM due to non-volatility

Challenges
n B+ tree in NVMM
n Data structure inconsistency

Solutions
n PCM-friendly B+ tree
n clflush & mfence
n Logging & shadowing

PCM-friendly B+ tree

Clflush & Mfence
n X86 processor operations to control cache lines
n clflush

n clflush invalidates the cache line that contains the address from all levels
of caches, and broadcasts the invalidation to all CPU cores in the system

n mfence
n mfence guarantees that all memory reads and memory writes issued

before the mfence in program order

Clflush & Mfence

Performance Analysis Metrices

Undo Redo Logging

n Record REDO and UNDO information for every update in a log
n Sequential write to a log (put it on a separate disk)
n Minimal information written to log, multiple updates fit in a single log page

n Log : An ordered list of REDO/UNDO actions
n Log record contains <XID, pageID, offset, length, old data, new data>
n Additional control information

Undo Redo Logging

Nw = 4m + 12
Nclf = m + 3
Nmf = m + 3

Shadowing
root

leaf parent

child J

Shadowing
root

leaf parent

child J J’

Shadowing
root

leaf parent

child J J’

parent’

Shadowing
root

leaf parent

child J J’

parent’

root’

Shadowing
n Short-Circuit Shadowing
n NVM supports 8-byte atomic write
n Proposed by Condit et al.

Short-Circuit Shadowing

root

leaf parent

child J J’

Short-Circuit Shadowing

root

leaf parent

child J J’

Shadowing

Nw = 2m + 11
Nclf = 0.25m + 2.5
Nmf = 2

Write-Atomic B+ tree
n Atomic write to commit all changes
n Minimize the movement of index entries
n Slot array + bitmap

Write atomic B+ tree
n Insertion
n Deletion
n Search

Write atomic B+ tree Insertion

Comparison Insertion

Logging Shadowing wB+-Tree

Nw = 4m + 12
Nclf = m + 3
Nmf = m + 3

Nw = 2m + 11
Nclf = 0.25m + 2.5
Nmf = 2

Nw = 3
Nclf = 2
Nmf = 2

Comparison

Experiment
n Setup

n Real machine modeling DRAM-like fast NVMM
n Simulation modeling PCM-based NVMM

Experiment Simulation
n Undo-Redo logging incurs drastic 6.6–13.7x

slowdowns for B+-Trees and 2.7–12.6x
slowdowns for PCM-friendly B+-Trees.

n Shadowing incurs 2.1–7.8x slowdowns
n wB+-Trees achieve a factor of 4.2–27.1x

improvement over the slowest previous
persistent solution

n The best wB+-Tree result is 1.5–2.4x better
than the fastest previous persistent solution

n wB+-Tree w/ bmp-leaf achieves slightly
better insertion and deletion performance
than wB+-Tree, but sees worse search
performance.

Experiment Real Machine

n wB+-Tree achieves similar search
performance compared to the baseline
main-memory non-persistent B+-Trees

n undo-redo logging incurs 1.6–11.8x
slowdowns

n Shadowing incurs 1.7–3.3x slowdowns
n The wB+-Trees achieve 2.1–8.8x

improvement over the slowest previous
persistent solution,and the best wB+-Tree
result is 1.2–1.6x better than the best
previous persistent solution in each
insertion or deletion

Conclusion
n Traditional approaches(logging, shadowing) incur drastic writes

and cache line flush
n NVM write plays a major role in PCM based NVMM
n Cache line flush is the major part for DRAM-like NVMM
n Write atomic B-trees has better insertion and deletion

performance, while achieving good search performance

Reference
n Persistent B+-Trees in Non-Volatile Main Memory-Shimen Chen et al

