Persistent B+Trees in NonVolatile Main Memory

CS 561 2021 spring
Chen-Wei Weng

U58151415

BOSTON
UNIVERSITY

.
Outline

= Introduction

= Motivation

« Challenges

» Performance analysis
=« WB+ tree

= Comparison

= Conclusion

BOSTON
UNIVERSITY

-
NVMM Non-Volatile Main Memory

= Data can be retained after power off
= Data is trapped in the floating gate

Control Gate

Dielectric or

oxide layers Floating Gate
|- :

n Source n Drain

BOS TN
UNIVERSITY

N
B+ tree

Internal Node~ - - - -~ -L|5 1 B AL Level 0
~al Root
\ Search Key Value oy .
e num| k, | k, Jooo | k,
(3 /|7 N8 I Level 1 chy [chy [chy,|ooo | ch

/N N

T HelZ1 [+[8ll [T] Level 2 num| k, | k, Jooo | k.
\) i " (Leaf) next[p, [p, [ooo [p,
| \ \ % .
Key Value Data Pointer ‘Sibling Pointer %
Leaf \Node

BOSTON

UNIVERSITY

Motivation

= Limitations of DRAM technology
= Increasing capacity of main memory

BL
WL

BLB ji]- BLB
WL

B pEEL Q&L»f;_
BL -l- .l_

STORE
i 4
" T.. BOSTON
eakage to eakage to
the same row a different row UNIVERSITY

; WL —#

.
Why NVMM?

= physical mechanisms are amenable to much smaller feature
sizes

= support byte-addressable reads and writes with performance
close to that of DRAM

« lower power than DRAM due to non-volatility

BOSTON
UNIVERSITY

N
Challenges

« B+ tree in NVMM
« Data structure inconsistency

BOSTON
UNIVERSITY

.
Solutions

« PCM-friendly B+ tree
= Clflush & mfence
» Logging & shadowing

BOSTON
UNIVERSITY

S
PCM-friendly B+ tree

num index entries num index entries blmp index entries

51112(3[7]9] | | [5[9]2]3]1]7 a9 [2]3] [1]7
(a) Sorted entries (b) Unsorted leaf (c¢)Unsorted leaf w/ bitmap

BOS TN
UNIVERSITY

.
Clflush & Mfence

= X806 processor operations to control cache lines

= Clflush

=« Clflush invalidates the cache line that contains the address from all levels
of caches, and broadcasts the invalidation to all CPU cores in the system

= mfence

= mfence guarantees that all memory reads and memory writes issued
before the mfence in program order

BOSTON
UNIVERSITY

Clflush & Mfence

= N N
o © O
B B i3

&)
o

time per line (ns)
o
=

o

—&— seqwr+clf+mf —e— ranwr+clf+mf

- - . = geqwr+clf - = =ranwr+clf
seqwr ranwr

S —t) e ——r

= -

1 2 3456 7 8 9 101112 13 14 15 16
number of lines flushed between 2 mfences

BOS TN
UNIVERSITY

N
Performance Analysis Metrices

Term Description
N Number of words written to NVMM
Neci¢ | Number of cache line flush operations
Ny, ¢ | Number of memory fence operations

n Total number of entries in a B™-Tree node

n' Total number of entries in a wBT-Tree node

m Number of valid entries in a tree node

[Number of levels of nodes that are split in an insertion

BOSTON

UNIVERSITY

.
Undo Redo Logging

= Record REDO and UNDO information for every update in a log
= Sequential write to a log (put it on a separate disk)
= Minimal information written to log, multiple updates fit in a single log page

= Log : An ordered list of REDO/UNDO actions
= Log record contains <XID, pagelD, offset, length, old data, new data>
= Additional control information

BOSTON
UNIVERSITY

.
Undo Redo Logging

procedure WRITEUNDOREDO(addr,new Value)
log.write (addr, *addr, new Value);
log.clflush_mfence ();
*addr= new Value; Nw=4m + 12
end procedure
procedure NEWREDO(addr,new Value) Nclf=m+3
l‘og.write (addr, new Value); Nmf=m+3
*addr= new Value;
end procedure
10: procedure COMMITNEWREDO
13 log.clflush_mfence ();
12: end procedure

i 8ol AR B

O

BOS TN
UNIVERSITY

Shadowing

root

O leaf parent
child @

BOS TN
UNIVERSITY

Shadowing

root

O leaf parent

S5 G

BOS TN
UNIVERSITY

Shadowing

root

O leaf parent parent’

child

BOS TN
UNIVERSITY

S
Shadowing

root’

parent parent’

BOS TN
UNIVERSITY

S
Shadowing

« Short-Circuit Shadowing
= NVM supports 8-byte atomic write
=« Proposed by Condit et al.

BOSTON
UNIVERSITY

Short-Circuit Shadowing

root

O leaf parent

®\> ®

BOS TN
UNIVERSITY

N
Short-Circuit Shadowing

. root
. . leaf . parent
N\
N\

N\
N\
® ® aid ()) @ 0

BOS TN
UNIVERSITY

S
Shadowing

I: procedure INSERTTOLEAF(leaf,newEntry,parent,ppos,sibling)
2 copyLeaf= AllocNode():
3 NodeCopy(copyLeatf, leaf):

ol

Insert(copyLeaf, newEntry);
S: for i=0; i < copyLeaf.UsedSize(); i+=64 do Nw=2m + 11
6: clflush(©leaf + 1); Nclf =0.25m + 2.5
1 end for 3
8: WriteRedoOnly(&parent.ch[ppos], copyLeaf): Nmf = 2

9: WriteRedoOnly(&sibling.next, copyLeaf);
10: CommitRedoWrites();
11: FreeNode(leaf);
12: end procedure

BOSTON

UNIVERSITY

N
Write-Atomic B+ tree

= Atomic write to commit all changes
= Minimize the movement of index entries
= Slot array + bitmap

Slot array bmp| k; | k, [coo | k,
Index next|py | po |eoo | p,
entries
(a) Slot array with 1-byte slots (b) Bitmap-only leaf
slot— ki | k, |[ooo | k, slot— ki | k, J]ooo | k,
array chy |chy | chy, o000 | ch, ATAY Thext P1 | P, |eoo | p,
(¢) Slot-only nonleaf (n<8) (d) Slot-only leaf (n<8)
slot _ bmp| ki |Jooo | Kk, slot _ bmp| ki |Jooo | k,

Il
array chg|chy|ooo |ch, | array nextl p; |[ooo | py
(e) Slot+bitmap nonleaf (f) Slot+bitmap leaf B O STON
UNIVERSITY

N
Write atomic B+ tree

= Insertion
= Deletion
= Search

BOSTON
UNIVERSITY

Write atomic B+ tree Insertion

16:
17:
18:
19:

20

: procedure INSERT2SLOTONLY_ATOMIC(leaf, newEntry)
/* Slot array is valid */

pos= leaf. GetInsertPosWithBinarySearch(newEntry);
/* Write and flush newEntry */

u= leaf. GetUnusedEntryWithSlotArray();
leaf.entry[u]= newEntry:

clflush(&leaf.entry[u]): mfence();
/* Generate an up-to-date slot array on the stack */
for (j=leaf.slot[0]: j>pos: j--) do

tempslot|j+1]= leaf.slot[j]:

end for

tempslot| pos]=u:

for (j=pos-1:j>1:)--) do

tempslot|j]= leaf.slot]j]:

end for

tempslot|O]=leaf.slot|0]+1;

/* Atomic write to update the slot array */

*((UInt64 *)leaf.slot)= *((UInt64 *)tempslot);
clflush(leaf.slot); mfence();
. end procedure

Slot array[5

Index
entries

(o] [2[3]

117 |

BOSTON

UNIVERSITY

Comparison [nsertion

Logging Shadowing wB+-Tree
nlum index entries Slot array SLLLLLIT
5112[3]7]9 entries (O] 12131 [1]7
Nw=4m + 12 Nw=2m+11 Nw =3
Nclf =m + 3 Nclf =0.25m + 2.5 Nclf =2
Nmf=m+3 Nmf =2 Nmf =2

BOS TN
UNIVERSITY

N
Comparison

[Solution |lnsertion without node splits [Insertion with [node splits [Deletion without node merges
B+ -Trees N = 4dm + 12, Ny =1l(dn + 15) + 4m + 19, Ny = [(0.375n + 3.25) +[N,, = 4m,
undo-redo logging '\plf = Nmnf=m+4+3 m+ 4125, Npps = 1(0.25n +2) + m 4+ 5 Netf = Npmg=m
Unsorted leaf Ny = 10, Nw =1l(dn+15)+n+4m+19, Ny5 = 1(0.375n +3.‘25)+ Ny =12,
undo-redo logging Neif =2,Nmyg =2 0.25n + m +4.125, N,y = 1(0.25n +2) + 0.25n + m + 5|Neif = 3, Njmy =3
Unsorted leaf w/ bitmap [Nw = 10, Ny =l(4n+15)—n+4m+19, Ny = [(0.375n+3.25) —|Nw = 4,
undo-redo logging Nef=2,Npp=2 0.25n + m+4.125 Ny = 1(0.25n +2) — 0.25n + m 4+ 5[Nop =1L Npp =1
B+ -Trees Ny =2m +11,Nps =2, [Ny =12n+5)+2m + 12, Ny =2m + 7, Nms = 2,
shadowing Neip = 0.25m + 2.5 Neg = 1(0.25n 4+ 1.5) 4+ 0.25m 4 2.625, N,y = 2 Neig = 0.25m + 2
Unsorted leaf Ny=2m+ 11, Ny =2, [Ny =1(2n+5)+2m + 12, Ny =2m+7, Ny =2,
shadowing Neif = 0.25m + 2.5 Ny =1(0.25n+1.5) +0.25m + 2.625, N,y = 2 Neiy = 0.25m + 2
Unsorted leaf w/ bitmap [Nw =2m + 11, Njpy =2, [Ny =1(2n +5) + 2m + 12, Nw=2m+7, Nmfs = 2,
shadowing Neip=025m+25 Neig = 1(0.25n + 1.5) + 0.25m 4 2.625, Ny g = 2 Nep=025m+2

Nw = 0.120m+4.25, Noif =[Ny = 1(1.25n" + 9.75) + 0.125m + 8.25, Nw = 0.120m + 2, Ny =
wB™ -Tree lm+3] Npp=3 '\df—l(l—qn +110’)+r m-+-313 Npp=3 $n1.+2..'\"mf=3
wB* -Tree Ny =3, \df—z = [(1.25n" +9t.:)) 0.25 '+0120m+"v Ny =1,Ngyy=1,
w/ bitmap-only leaf Nmyj =2 \(‘{f = I(L=n’ 1:?:)—m" +z2rm+322 Nypp = 3| Nmyg =1
wB ™ -Tree ‘\u, = 3, \le = 2, N w l(n + 9] -+ ' & »'\'-u.' = 1, .'\'clf =1,
w/ slot-only nodes J\rmf =2 .'\'.C{j = 1(0.125n + 1.75) + 2.375, "\rmj = 2 .'\'.mf =1

Note: The estimated N ss are lower bounds because they do not cover the case where a log record spans the cache line boundary, and requires two flushes.

BOSTON

For 512-byte sized nodes, n = 31, n’ = 29, m is about 21 if a node is 70% full.

UNIVERSITY

.
Experiment

= Setup
= Real machine modeling DRAM-like fast NVMM
« Simulation modeling PCM-based NVMM

Real Machine Description

Processor 2 Intel Xeon E5-2620, 6 cores/12 threads, 2.00GHz

32KB L1l/core, 32KB L1D/core, 256KB L2/core
CPU cache 15MB shared L3, all caches with 64B lines
OS Ubuntu 12.04, Linux 3.5.0-37-generic kernel
Compiler gcc 4.6.3, compiled with -O3
Simulator Description
Processor Out-of-order X86-64 core, 3GHz
Private L1D (32KB, 8-way, 4-cycle latency),
private L2 (256KB, 8-way, 11-cycle latency),
shared L3 (8MB, 16-way, 39-cycle latency),
all caches with 64B lines,
64-entry DTLB, 32-entry write back queue
4 ranks, read latency for a cache line: 230 cycles,

PCM write latency per 8B modified word: 450 cycles,
Eyp = 2p], Egy = 1670 BOSTON

CPU cache

UNIVERSITY

N

4-line 8-line
nodes nodes

(a) Search, 70% full nodes

cycles

-
4-line 8-line
nodes nodes

(d) Insertion, 100% full nodes

4.0E+9

3.0E+9 A

cycles

1.0E+9 A

0.0E+0

(b) Insertion, 70% full nodes

3.0E+9

2.0E+9

cycles

1.0E+9 A

0.0E+0

2.0E+9 A

2-line 4-line
nodes nodes

~————

2-line 4-line

nodes nodes

(e) Zoom of (d)

1.5E+9

1.0E+9 A

cycles

5.0E+8

0.0E+0

4.0E+9

3.0E+9 A

2.0E+9

cycles

1.0E+9 -

0.0E+0

Experiment Simulation

2-line 4-line 8-line
nodes nodes nodes

(c) Zoom of (b)

—A— btree (volatile)

—O— btree log

—3— unsorted leaf log
—O— uleaf bmp log
-=X--btree shadow
-=+=-unsorted leaf shadow
--3--uleaf bmp shadow
—+— wbtree

—— wbtree w/ bmp-leaf

______,..‘_.r‘_".

e

2-line 4-line 8-line
nodes nodes nodes

(f) Deletion, 70% full nodes

—A— btree (volatile)

—O— btree log

—t3— unsorted leaf log
—O— uleaf bmp log
-=¥--btree shadow
-=+=-unsorted leaf shadow
--3-- uleaf bmp shadow
—t+— whtree

—— wbtree w/ bmp-leaf

Undo-Redo logging incurs drastic 6.6—13.7x
slowdowns for B+-Trees and 2.7-12.6x
slowdowns for PCM-friendly B+-Trees.
Shadowing incurs 2.1-7.8x slowdowns
wB+-Trees achieve a factor of 4.2-27.1x
improvement over the slowest previous
persistent solution

The best wB+-Tree result is 1.5-2.4x better
than the fastest previous persistent solution
wB+-Tree w/ bmp-leaf achieves slightly
better insertion and deletion performance
than wB+-Tree, but sees worse search
performance.

BOSTON

UNIVERSITY

-—
Experiment Real Machine

400

elapsed time (ms)
W
o
o

250

200 T -
2-line 4-line 8-line
nodes nodes nodes

(a) Search, 70% full nodes

8000

6000

elapsed time (ms)
EN
o
o
o

N
o
o
o

o

2-line 4-line 8-line
nodes nodes nodes

(d) Insertion, 100% full nodes

elapsed time (ms)
N
o
o
o

1000 -

2-line 4-line 8-line
nodes nodes nodes

(b) Insertion, 70% full nodes
2000

O‘E
» 1600 o
E Q:: ---- ;2/4
= s o
E 1200 -
T 800 |
7]
&
o 400 +—4&— A —A
0 - T
2-line 4-line 8-line
nodes nodes nodes
(e) Zoom of (d)

1000

800

elapsed time (ms)

2000

1500

1000

elapsed time (ms)

500

0

600 -

400 A

200 A

2-line 4-line 8-line
nodes nodes nodes

(c) Zoom of (b)

—A— btree (volatile)

—O— btree log

—3— unsorted leaf log
—O— uleaf bmp log
-=%--btree shadow
-=+--unsorted leaf shadow
-=3-- uleaf bmp shadow
—+— wbtree

—>— wbtree w/ bmp-leaf

7
4

T 7

s
éiﬁfi: i

- -
2-line 4-line 8-line
nodes nodes nodes

(f) Deletion, 70% full nodes

—A— btree (volatile)

—O— btree log

—{— unsorted leaf log
—O— uleaf bmp log
-=%--btree shadow
-=+--unsorted leaf shadow
--3-- uleaf bmp shadow
—+— wbtree

—— wbtree w/ bmp-leaf

wB+-Tree achieves similar search
performance compared to the baseline
main-memory non-persistent B+-Trees
undo-redo logging incurs 1.6—11.8x
slowdowns

Shadowing incurs 1.7-3.3x slowdowns
The wB+-Trees achieve 2.1-8.8x
improvement over the slowest previous
persistent solution,and the best wB+-Tree
result is 1.2—1.6x better than the best
previous persistent solution in each
insertion or deletion

BOSTON

UNIVERSITY

L
Conclusion

» Traditional approaches(logging, shadowing) incur drastic writes
and cache line flush

« NVM write plays a major role in PCM based NVMM
« Cache line flush is the major part for DRAM-like NVMM

= Write atomic B-trees has better insertion and deletion
performance, while achieving good search performance

BOSTON
UNIVERSITY

L
Reference

= Persistent B+-Trees in Non-Volatile Main Memory-Shimen Chen et al

BOSTON
UNIVERSITY

