PUMP UP THE VOLUME: PROCESSING
LARGE DATA ON GPUS WITH FAST
INTERCONNECTS ciemens otz erat

Presented by : Syahrial Dahler

BACKGROUND

Introduction of Co Processors

* FPGA (field-programmable gate array) |
* ASIC (application-specific integrated circuit)
* GPU (Graphic Processing Unit) <&

GPU g CUDA

ARCHITECTURE % multiprocessor n

>

CE) multiprocessor 1
Tesla M2070 Processor: 0 multiprocessor 0

: . . >

Streaming Multiprocessors (SM): 14 o Local Shared Memory
Streaming Processors on each SM: 32 12

> FU FU ... [FU
Total cores = 14 x 32 = 448 cores 8

thread block

Each Streaming Multiprocessor supports

1024 threads.

Compute unified device architecture

ADVANTAGES OF GPU

Parallel

‘ Faster

Processing result

’ GPU IN MODERN DATABASES

) NS cImm

Kinstica I[L==2Y

CHALLENGES OF USING GPU FOR DATABASE
APPLICATION

Transfer Bottleneck
Low Interconnect Bandwidth
Small GPU memory capacity
Coarse grain cooperation of CPU and GPU

How to access data in main memory from GPU?

FAST INTERCONNECT

Faster interconnects
help to remedy transfer
bottleneck issues

NVLink 2.0

PCle CONNECTION

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDIUM
BANDWIDTH LARGE
SYSTEM MEMORY

PCle SWITCH

HIGH BANDWIDTH
GRAPHICS MEMORY

N\/

HIGH BANDWIDTH
GRAPHICS MEMORY

MEDIUM
BANDWIDTH LARGE
SYSTEM MEMORY

ANALYSIS OF A FAST
INTERCONNECT

NVLink 2.0 improves the

GPU’s interconnect
performance

(data transfer)

Bandwidth (GiB/s) Bandwidth (GiB/s)

Bandwidth (GiB/s)

80
60
40
20

150

100
50

750 1
500 A
250 A

=]

I NVLink20 [PCl-e30 [l UPI

Sequential — Random
=)
63 53| 28
S = =2
2 =1
b=
5 0

B X-Bus

Latency (ns)

1000
750
500
250

0

Latency
790

N
on
<

121
211

(a) NVLink 2.0 vs. CPU & GPU Interconnects.
B NVLink20 [Xeon [POWER9

Sequential o Random
2
/m
117 3 4 6 e 3.6
\ — N o3
on o0 e 3
.é 1
Cg 0

(b) NVLink 2.0 vs. CPU memory.
M NVLink20 [l GPU

Sequential Random
729 % 22.3
~— 20 .
=
E 10- o
3 . o~
g 0
=a)

(c) NVLink 2.0 vs. GPU memory.

Latency (ns)

500 -
400 A
300 -
200 -
100 A

Latency
434

Latency
434

0

CHALLENGES DESPITE FAST CONNECTS (NV LINK)
FOR QUERY PROCESSING

Out-of-core GPU join operator must perform both data access and computation
efficiently

Join CPU and GPU requires effective cooperation. Locality and synchronization cost

Increase build side=> increase NP —HJ = spill Hash table

to CPU memory =2 more irregular access to CPU memory
(inefficient)

GOAL OF THE PAPER

“Scale up GPU-accelerated data
management to arbitrary data
volumes”

Hash-Join

Partition both relations using
hash funtion h: R tuplesin
partition / will only match S

tuples in partition J

Read in a partition of R, hash it
using h2 (<> h!). Scan matching

partition of S, probe hash table
for matches

Original

Relation OUTPUT Partitions
s 1 —
1
INPUT 2
hash 2
> function
e o o I °% 4 0 0
! B-1
B-1
SmeeE_ . RN
Disk B main memory buffers Disk
Partitions !
of R& S — Join Result
e Hash table for partition
hash Ri (k < B-1 pages)
fn .
h2 . ¢ ¢ o -
éhZ . S8
Input buffer Output .
=) for Si buffer TR
B main memory buffers Disk

NO PARTITION HASH JOIN (RPX1S)

To take advantage of multi core processing
Build

Scan relation R and create a hash table on join key.

Probe

For each tuple in S, look up its join key in hash table for R. If a
match is found, output combined tuple.

DATA TRANSFER BETWEEN CPU AND GPU

Table 1: An overview of GPU transfer methods.

P USh => C P U p USh Method Semantics | Level | Granularity | Memory
data to GPU Pageable Copy
Staged Copy Pageable
Dynamic Pinning | Push SW Chunk
Pinned Copy Pinned
UM Prefetch Unified
Pu | => G PU PU 1 UM Migration 0S Page Unified
Zero-Copy Pull . ; Pinned
d atra f rom C P U Coherence o ayie Pageable

Coherence : GPU can directly access any
CPU memory during execution (because of
NV Link)

SCALING GPU HASH JOIN -
SCALING PROBE SIZE

1. Build hash table on GPU by
pulling R tuples on demand from
CPU

2. Using Coherence transfer

Baseline: data is copied into GPU
memory to build hash table

CPU |<l! (P [:I

NVLink 2.0

....................... sihash{key)|E
[-

(b) Data in CPU memory and
hash table in GPU memory.

SCALING GPU HASH JOIN
: SCALING BUILD SIZE

1. Hash Table is stored in . PR p— []
CPU memory NVLink 2.0

- .

..................... .{hgqh(lp_\-]
2. No longer constrained E (,5
by the GPU’s memory

capacity (a) Data and hash table in
CPU memory.

SCALING GPU HASH JOIN -

OPTIMIZE HASH TABLE
PLACEMENT

Since GPU is much faster than CPU:

1. Place Hash Table on GPU memory
and then spill to CPU memory

2. It is done by using Hybrid Hash
table

3. Hybrid hash table uses virtual
memory to abstract the physical
location of memory page

CPU |- ¢ PU I:

‘ f
3 — e
e I — O

i
......
. —

virtual memory mapping

(b) Data in CPU memory and
hash table spills from GPU
memory into CPU memory.

GPU Memory CPU Memory

alloc @ alloc @
‘\‘ ” -
‘\“ "" ""o

mapping ™.

..

Virtual Memory

Figure 8: Allocating the hybrid hash table.

SCALING-UP USING CPU
AND GPU : TASK

SCHEDULING chu
To solve load imbalance issue
Morsel Batch

1. Adapt the CPU-oriented, morsel-driven
approach

Figure 10: Dynamically
scheduling tasks to CPU

2. Give each processor the right amount and GPU Processors.

of work to minimize execution skew by
considering the increased latency of
scheduling work on a GPU, and the higher
processing rate of the GPU

SCALING-UP USING CPU AND

GPU : HETEROGENEOUS HASH
TABLE PLACEMENT

CPU |l (P H
A. CPU and GPU processing a join : e ey L
using a globally shared hash table £ - O) é)
(Het strategy) Same as scaling build _
sive (a) Cooperatively process

join on CPU and GPU with
hash table in CPU memory.

SCALING-UP USING CPU AND
GPU : HETEROGENEOUS HASH
TABLE PLACEMENT

Processors are fastest
when accessing their
local memories

(GPUOH&()

arge Probe
relaton
¥
GPU with in-GPU
hash table
no

Figure 11: Hash table placement decision.

yes table In CPU
n

SCALING-UP USING CPU AND GPU :

HETEROGENEQUS HASH TABLE
PLACEMENT (WHEN HASH IS SMALL)

1. GPU build hash table in

local memory
2. Copy to all other processors

3. Execute the probe phase on
all processors using our
heterogeneous scheduling
strategy.

CPU [y (P I:I
NVLink 2.0
hash(key)}--------s{hash(key)| [E

R
!
E
()
®)

tovtenan .@memcopy P AS

(b) Build hash table on

GPU, copy the hash table to
processor-local memories,
and then cooperatively

probe on CPU and GPU.

MULTI GPU HASH TABLE PLACEMENT

Advantages of multi-GPU
1. Using only GPUs avoids computational skew

2. Distributing large hash tables within GPU memory frees
CPU memory bandwidth for loading the base relations

3. interleaving the hash table over multiple GPUs utilizes
the full bi-directional bandwidth of fast interconnects, as
opposed to the mostly uni-directional traffic of the Het
strategy

EXPERIMENT: WORKLOADS

Table 2: Workload Overview.

Property A (from [10]) | B C (from [54])
key / payload 8 / 8 bytes 8 / 8 bytes | 4/ 4 bytes
cardinality of R | 2°7 tuples 2'8 tuples | 1024 - 10° tuples
cardinality of S | 2! tuples 23! tuples | 1024 - 10° tuples
total size of R 2 GIiB 4 MiB 7.6 GiB

total size of S 32 GiB 32 GiB 7.6 GiB

EXPERIMENT RESULT (NVLINK VS OTHERS)

NVLink throughput is gy e e
higher than PCl-e 3.0 e L

Pageable Copy
Staged Copy 10.73

o.e7 i
I 5
Dynamic Pinning

|
|
!
Coherence , Unsupported 3.83
Pinned Copy 10.74 | R 42
Coherence produces Zero Copy J 0.77 - I ;
. Unified Migration | I 0.16 |
the hlgheSt Thl‘oughpUT Unified Prefetch ! lO.#7 |

2: 3 4 9 1. 2 B3 4
Throughput (G Tuples/s)

EXPERIMENT RESULT (DATA LOCATION)

Data Location: M GPU [CPU B rCPU W rGPU

0

Performance best when 50 20 19.08 2

. &=

data in 1T GPU memory 0 151 15-
‘é_‘lo 101 O ¢ O -
< - T
%o e 1N & & N
o | I
- Workload A Workload B Workload C

(scaled) (scaled) (scaled)

EXPERIMENT RESULT (HASHTABLE LOCATION)

Performance best when _ HashTable Location: M Geu W cou M U M fGPU
hash table in 1 GPU @ 51 51417 5
o |3.82 |m q
memory g ! ’
¥, 31 3 342.62
ER3 2| 2\
fnlq) g 1 o g " 1- @ 5
: =T © © sl O -
ELE 0- 0-
3 Workload A Workload B Workload C

EXPERIMENT RESULT (SCALING DATA SIZE)

Interconnects. The CPU achieves the & CPU 4 PCle30 # NVLink20
— Branching = Predication =- PCl-e3.0 =-- NVLink2.0

highest throughput, and
outperforms NVLink 2.0

| i s B o e e =

| ——t—t—t—t——t——1%

1 F - B __._....._ -8B --F - B r—= - -4--8

Branching vs. Predication. Branching
performs better than predication on

the GPU with NVLink 2.0.

Throughput (G Tuples/s)
L 0o — o co

250 500 750 1000
Seale Factor

‘ EXPERIMENT RESULT (SCALING PROBE SIZE)

9 CPU (PRA) # PCIl-e3.0 4 NVLink 2.0
— PCI-e3.0 -- NVLink20 -- GPU memory

[t——t——t—-—-¢ - =3

Throughput (G Tuples/s)
C = N W b

2048 4096 6144 8192
Probe relation size (million tuples)

-

The throughput of NVLink 2.0 is the fastest

EXPERIMENT RESULT (SCALING BUILD SIZE)

NV Link provides best

® CPU(PRA) & PCl-e30 % NVLink20 - NVLink 2.0 Hybrid HT
— PCl-e3.0 -- GPUmemory

through put

B
o
1

]

S
NVLink 2.0 with Hybrid = 1'0_
Hash Table degrades B 0s-

(@) v g . :
gracefully Sha 512 1024 1536 2048

Build & probe relation size (million tuples)

Figure 17: Scaling the build-side relation.

EXPERIMENT RESULT (BUILD TO PROBE RATIO)

The build phase takes
7 1% of the time

For larger ratios, the
build-side takes up o
smaller proportion of
time

05580

3.24
3.6

Percent

Throughput (G Tuples/s)
e TR ame

/iy | 12 4 B 16

(a) Performance.

100 -

o

50 1

25

" Build || Probe

1 2 s 8BS
(b) Time Breakdown.
Figure 18: Different build-to-probe ratios on NVLink.

EXPERIMENT RESULT (BUILD DATA SKEW)

Higher skew % of HT on GPUCPU @ 0,100 A 1090 M 30,70 + 50,50 5 100,0
. o - PCI-e 3.0 - NVLink 2.0
leads to a higher F CPU (NOPA) PClI-e 3.0
throughput Sal M e i
<8 =5 3
: J 4 o
21 - _
%Q 1 la-—a—a-0- - — — - 1 —m e e e 1
o O T T T T O‘M 0 T T T T
g 00 05 10 15 DRE S A TS O 95 10 15
z Zipf exponent

Figure 19: Join performance when the probe relation
follows a Zipf distribution.

EXPERIMENT RESULT (JOIN SELECTIVITY)

Join throughput
decreases with
higher selectivity

Hash Table Location ® GPU #& CPU

— PCl-e30 --

5..

O = DN W
|

F: CPU (NOPA)

o 4 41
bl

2.2

ot

00 1 T e e -

-

8 O T T T T T

z 0.000.250.500.751.00

PCI-e 3.0

Join selectivity

NVLink 2.0

5.‘

- 1
—
0.000.250.500.751.00 0.000.250.500.751.00

3.

NVLink 2.0

T A Ak

Figure 20: The effect of join selectivity on throughput.

EXPERIMENT RESULT

(CPU GPU €O
PROCESSING SCALE UP)

1. Using a GPU always
achieves the same or

better throughput than
the CPU-only strategy,

and never decreases
throughput.

2. GPU-only strategy
achieves the best
throughput for most of
our workloads.

Throughput (G Tuples/s)

Time (s)
S o= NW

S = N W =D
L 1 i i 1 2

~ 3.81

=

™~
Workload A
& 3.07 v
o o~

Build

B CPU(NOPA)

S = N W =D
L 1 4 L 1 1

B Het I GPU + Het
485

Workload B

(a) Performance.

e = N W
—rt

B GrPU

S = N W =
R 5 4 - §- gt s.g

Workload C

0.25

Probe

(b) Time per join phase in workload C (scaled).

INSIGHTS

GPUs have high-bandwidth access to CPU memory
GPUs can efficiently process large, out-of-core data

GPUs are able to operate on out-of-core data structures, but should use GPU
memory if possible

Scaling-up co-processors with CPU + GPU makes performance more robust.

Due to cache-coherence, memory pinning is no longer necessary to achieve high
transfer bandwidth.

Fair performance comparisons between GPUs vs. CPUs have become practical.

CONCLUSION

With fast interconnects, GPU acceleration
becomes an attractive scale-up alternative
that promises large speedups for
databases.

THANK YOU

