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BACKGROUND

Introduction of Co Processors

* FPGA (field-programmable gate array) |
* ASIC (application-specific integrated circuit)
* GPU (Graphic Processing Unit) <&
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ADVANTAGES OF GPU

Parallel

‘ Faster

Processing result



’ GPU IN MODERN DATABASES
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CHALLENGES OF USING GPU FOR DATABASE
APPLICATION

Transfer Bottleneck
Low Interconnect Bandwidth
Small GPU memory capacity
Coarse grain cooperation of CPU and GPU

How to access data in main memory from GPU?



FAST INTERCONNECT

Faster interconnects
help to remedy transfer
bottleneck issues

NVLink 2.0
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ANALYSIS OF A FAST
INTERCONNECT

NVLink 2.0 improves the

GPU’s interconnect
performance

(data transfer)
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CHALLENGES DESPITE FAST CONNECTS (NV LINK)
FOR QUERY PROCESSING

Out-of-core GPU join operator must perform both data access and computation
efficiently

Join CPU and GPU requires effective cooperation. Locality and synchronization cost

Increase build side=> increase NP —HJ = spill Hash table

to CPU memory =2 more irregular access to CPU memory
(inefficient)



GOAL OF THE PAPER

“Scale up GPU-accelerated data
management to arbitrary data
volumes”



Hash-Join

Partition both relations using
hash funtion h: R tuplesin
partition / will only match S

tuples in partition J

Read in a partition of R, hash it
using h2 (<> h!). Scan matching

partition of S, probe hash table
for matches
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NO PARTITION HASH JOIN (RPX1S)

To take advantage of multi core processing
Build

Scan relation R and create a hash table on join key.

Probe

For each tuple in S, look up its join key in hash table for R. If a
match is found, output combined tuple.



DATA TRANSFER BETWEEN CPU AND GPU

Table 1: An overview of GPU transfer methods.

P USh => C P U p USh Method Semantics | Level | Granularity | Memory
data to GPU Pageable Copy
Staged Copy Pageable
Dynamic Pinning | Push SW Chunk
Pinned Copy Pinned
UM Prefetch Unified
Pu | => G PU PU 1 UM Migration 0S Page Unified
Zero-Copy Pull . ; Pinned
d atra f rom C P U Coherence o ayie Pageable

Coherence : GPU can directly access any
CPU memory during execution (because of
NV Link)



SCALING GPU HASH JOIN -
SCALING PROBE SIZE

1. Build hash table on GPU by
pulling R tuples on demand from
CPU

2. Using Coherence transfer

Baseline: data is copied into GPU
memory to build hash table
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(b) Data in CPU memory and
hash table in GPU memory.




SCALING GPU HASH JOIN
: SCALING BUILD SIZE

1. Hash Table is stored in . PR p— []
CPU memory NVLink 2.0

- .

..................... .{hgqh(lp_\-]
2. No longer constrained E (,5
by the GPU’s memory

capacity (a) Data and hash table in
CPU memory.




SCALING GPU HASH JOIN -

OPTIMIZE HASH TABLE
PLACEMENT

Since GPU is much faster than CPU:

1. Place Hash Table on GPU memory
and then spill to CPU memory

2. It is done by using Hybrid Hash
table

3. Hybrid hash table uses virtual
memory to abstract the physical
location of memory page
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(b) Data in CPU memory and
hash table spills from GPU
memory into CPU memory.

GPU Memory CPU Memory

alloc @ alloc @
‘\‘ ” -
‘\“ "" ""o

mapping ™.

..............................................

Virtual Memory

Figure 8: Allocating the hybrid hash table.



SCALING-UP USING CPU
AND GPU : TASK

SCHEDULING chu
To solve load imbalance issue
Morsel Batch

1. Adapt the CPU-oriented, morsel-driven
approach

Figure 10: Dynamically
scheduling tasks to CPU

2. Give each processor the right amount and GPU Processors.

of work to minimize execution skew by
considering the increased latency of
scheduling work on a GPU, and the higher
processing rate of the GPU



SCALING-UP USING CPU AND

GPU : HETEROGENEOUS HASH
TABLE PLACEMENT

CPU |l (P H
A. CPU and GPU processing a join : e ey L
using a globally shared hash table £ - O) é)
(Het strategy) Same as scaling build _
sive (a) Cooperatively process

join on CPU and GPU with
hash table in CPU memory.



SCALING-UP USING CPU AND
GPU : HETEROGENEOUS HASH
TABLE PLACEMENT

Processors are fastest
when accessing their
local memories
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Figure 11: Hash table placement decision.
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SCALING-UP USING CPU AND GPU :

HETEROGENEQUS HASH TABLE
PLACEMENT (WHEN HASH IS SMALL)

1. GPU build hash table in

local memory
2. Copy to all other processors

3. Execute the probe phase on
all processors using our
heterogeneous scheduling
strategy.
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(b) Build hash table on

GPU, copy the hash table to
processor-local memories,
and then cooperatively

probe on CPU and GPU.



MULTI GPU HASH TABLE PLACEMENT

Advantages of multi-GPU
1. Using only GPUs avoids computational skew

2. Distributing large hash tables within GPU memory frees
CPU memory bandwidth for loading the base relations

3. interleaving the hash table over multiple GPUs utilizes
the full bi-directional bandwidth of fast interconnects, as
opposed to the mostly uni-directional traffic of the Het
strategy



EXPERIMENT: WORKLOADS

Table 2: Workload Overview.

Property A (from [10]) | B C (from [54])
key / payload 8 / 8 bytes 8 / 8 bytes | 4/ 4 bytes
cardinality of R | 2°7 tuples 2'8 tuples | 1024 - 10° tuples
cardinality of S | 2! tuples 23! tuples | 1024 - 10° tuples
total size of R 2 GIiB 4 MiB 7.6 GiB

total size of S 32 GiB 32 GiB 7.6 GiB




EXPERIMENT RESULT (NVLINK VS OTHERS)
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EXPERIMENT RESULT (DATA LOCATION)

Data Location: M GPU [ CPU B rCPU W rGPU
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EXPERIMENT RESULT (HASHTABLE LOCATION)
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EXPERIMENT RESULT (SCALING DATA SIZE)

Interconnects. The CPU achieves the & CPU 4 PCle30 # NVLink20
— Branching = Predication =- PCl-e3.0 =-- NVLink2.0

highest throughput, and
outperforms NVLink 2.0
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‘ EXPERIMENT RESULT (SCALING PROBE SIZE)
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EXPERIMENT RESULT (SCALING BUILD SIZE)

NV Link provides best
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Figure 17: Scaling the build-side relation.



EXPERIMENT RESULT (BUILD TO PROBE RATIO)

The build phase takes
7 1% of the time

For larger ratios, the
build-side takes up o
smaller proportion of
time
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Figure 18: Different build-to-probe ratios on NVLink.



EXPERIMENT RESULT (BUILD DATA SKEW)
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Figure 19: Join performance when the probe relation
follows a Zipf distribution.



EXPERIMENT RESULT (JOIN SELECTIVITY)

Join throughput
decreases with
higher selectivity
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Figure 20: The effect of join selectivity on throughput.



EXPERIMENT RESULT

(CPU GPU €O
PROCESSING SCALE UP)

1. Using a GPU always
achieves the same or

better throughput than
the CPU-only strategy,

and never decreases
throughput.

2. GPU-only strategy
achieves the best
throughput for most of
our workloads.
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INSIGHTS

GPUs have high-bandwidth access to CPU memory
GPUs can efficiently process large, out-of-core data

GPUs are able to operate on out-of-core data structures, but should use GPU
memory if possible

Scaling-up co-processors with CPU + GPU makes performance more robust.

Due to cache-coherence, memory pinning is no longer necessary to achieve high
transfer bandwidth.

Fair performance comparisons between GPUs vs. CPUs have become practical.



CONCLUSION

With fast interconnects, GPU acceleration
becomes an attractive scale-up alternative
that promises large speedups for
databases.
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