
PUMP UP THE VOLUME: PROCESSING
LARGE DATA ON GPUS WITH FAST
INTERCONNECTS C L E M E N S LU T Z E T. A L

Presented by : Syahrial Dahler

BACKGROUND

Introduction of Co Processors
• FPGA (field-programmable gate array)
• ASIC (application-specific integrated circuit)
• GPU (Graphic Processing Unit)

GPU
ARCHITECTURE

Tesla M2070 Processor:

Streaming Multiprocessors (SM): 14

Streaming Processors on each SM: 32

Total cores = 14 x 32 = 448 cores

Each Streaming Multiprocessor supports
1024 threads.

Compute unified device architecture

ADVANTAGES OF GPU

Parallel
Processing

Faster
result

GPU IN MODERN DATABASES

CHALLENGES OF USING GPU FOR DATABASE
APPLICATION

Transfer Bottleneck
§ Low Interconnect Bandwidth
§ Small GPU memory capacity
§ Coarse grain cooperation of CPU and GPU
§ How to access data in main memory from GPU?

FAST INTERCONNECT

Faster interconnects
help to remedy transfer
bottleneck issues

NVLink 2.0

ANALYSIS OF A FAST
INTERCONNECT
NVLink 2.0 improves the
GPU’s interconnect
performance

(data transfer)

CHALLENGES DESPITE FAST CONNECTS (NV LINK)
FOR QUERY PROCESSING

qOut-of-core GPU join operator must perform both data access and computation
efficiently

qJoin CPU and GPU requires effective cooperation. Locality and synchronization cost

qIncrease build sideà increase NP –HJ à spill Hash table
to CPU memory à more irregular access to CPU memory
(inefficient)

GOAL OF THE PAPER

“Scale up GPU-accelerated data
management to arbitrary data
volumes”

NO PARTITION HASH JOIN (R⨝S)

To take advantage of multi core processing
Build
Scan relation R and create a hash table on join key.

Probe
For each tuple in S, look up its join key in hash table for R. If a
match is found, output combined tuple.

DATA TRANSFER BETWEEN CPU AND GPU

Push => CPU push
data to GPU

Pull => GPU pull
data from CPU

Coherence : GPU can directly access any
CPU memory during execution (because of
NVLink)

SCALING GPU HASH JOIN :
SCALING PROBE SIZE

1. Build hash table on GPU by
pulling R tuples on demand from
CPU
2. Using Coherence transfer

Baseline: data is copied into GPU
memory to build hash table

SCALING GPU HASH JOIN
: SCALING BUILD SIZE

1. Hash Table is stored in
CPU memory

2. No longer constrained
by the GPU’s memory
capacity

SCALING GPU HASH JOIN :
OPTIMIZE HASH TABLE
PLACEMENT

Since GPU is much faster than CPU:

1. Place Hash Table on GPU memory
and then spill to CPU memory

2. It is done by using Hybrid Hash
table

3. Hybrid hash table uses virtual
memory to abstract the physical
location of memory page

SCALING-UP USING CPU
AND GPU : TASK
SCHEDULING

To solve load imbalance issue

1. Adapt the CPU-oriented, morsel-driven
approach

2. Give each processor the right amount
of work to minimize execution skew by
considering the increased latency of
scheduling work on a GPU, and the higher
processing rate of the GPU

SCALING-UP USING CPU AND
GPU : HETEROGENEOUS HASH
TABLE PLACEMENT

A. CPU and GPU processing a join
using a globally shared hash table
(Het strategy) Same as scaling build
size

SCALING-UP USING CPU AND
GPU : HETEROGENEOUS HASH
TABLE PLACEMENT

Processors are fastest
when accessing their
local memories

SCALING-UP USING CPU AND GPU :
HETEROGENEOUS HASH TABLE
PLACEMENT (WHEN HASH IS SMALL)

1. GPU build hash table in
local memory

2. Copy to all other processors

3. Execute the probe phase on
all processors using our
heterogeneous scheduling
strategy.

MULTI GPU HASH TABLE PLACEMENT

Advantages of multi-GPU

1. Using only GPUs avoids computational skew

2. Distributing large hash tables within GPU memory frees
CPU memory bandwidth for loading the base relations

3. interleaving the hash table over multiple GPUs utilizes
the full bi-directional bandwidth of fast interconnects, as
opposed to the mostly uni-directional traffic of the Het
strategy

EXPERIMENT: WORKLOADS

EXPERIMENT RESULT (NVLINK VS OTHERS)

NVLink throughput is
higher than PCI-e 3.0

Coherence produces
the highest throughput

EXPERIMENT RESULT (DATA LOCATION)

Performance best when
data in 1 GPU memory

EXPERIMENT RESULT (HASHTABLE LOCATION)

Performance best when
hash table in 1 GPU
memory

EXPERIMENT RESULT (SCALING DATA SIZE)

Interconnects. The CPU achieves the
highest throughput, and
outperforms NVLink 2.0

Branching vs. Predication. Branching
performs better than predication on
the GPU with NVLink 2.0.

EXPERIMENT RESULT (SCALING PROBE SIZE)

The throughput of NVLink 2.0 is the fastest

EXPERIMENT RESULT (SCALING BUILD SIZE)

NV Link provides best
through put

NVLink 2.0 with Hybrid
Hash Table degrades
gracefully

EXPERIMENT RESULT (BUILD TO PROBE RATIO)

The build phase takes
71% of the time

For larger ratios, the
build-side takes up a
smaller proportion of
time

EXPERIMENT RESULT (BUILD DATA SKEW)

Higher skew
leads to a higher
throughput

EXPERIMENT RESULT (JOIN SELECTIVITY)

Join throughput
decreases with
higher selectivity

EXPERIMENT RESULT
(CPU GPU CO
PROCESSING SCALE UP)

1. Using a GPU always
achieves the same or
better throughput than
the CPU-only strategy,
and never decreases
throughput.

2. GPU-only strategy
achieves the best
throughput for most of
our workloads.

INSIGHTS

§GPUs have high-bandwidth access to CPU memory

§GPUs can efficiently process large, out-of-core data

§GPUs are able to operate on out-of-core data structures, but should use GPU
memory if possible

§Scaling-up co-processors with CPU + GPU makes performance more robust.

§Due to cache-coherence, memory pinning is no longer necessary to achieve high
transfer bandwidth.

§Fair performance comparisons between GPUs vs. CPUs have become practical.

CONCLUSION

With fast interconnects, GPU acceleration
becomes an attractive scale-up alternative
that promises large speedups for
databases.

THANK YOU

