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Problem

e Increasing multi-core parallelism > increasing single-thread
performance
e Plan-driven parallelism/volcano-style parallelism

©)
©)

Bottlenecks and load balancing issues; not flexible

Parallelism hidden from operators; not optimal partitioning results

due to lack of locality awareness.

Partitioning is static; load imbalances

Not NUMA aware; memory controllers decentralized to chips.

m Main memory databases; many-core allows parallelization,
but decentralization increases costs.



NUMA-Awareness

e Non-Uniform Memory Access
e Mem controllers — chips.
e Access between cores and
main memory not uniform.
e Access costs varied dependent
on chip location (decentralized)
e Memory hierarchies need to be
accounted for s.t. threads work on local data
e Local data accessed faster than non-local data
e Strategies: faster memory access > faster processors; limit memory
accesses




Example

e Processors accessing non-local data increases latency

e Bus length increases with more processors
o Scalability problems; increased latency; memory hierarchy is important.
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Adaptive morsel-driven query execution

Parallel query evaluation framework

Task distribution at runtime; fully elastic

Input processed by constant-sized work units
NUMA-aware

Morsel-wise scheduling for operators; hash-table sharing.
Worker threads are equal to hardware threads.



Features

e Morsels (small fragments of input data) scheduled to threads.
o Reduces load imbalances, workers finish on time.
o Allocation of memory to decentralized chips; reduces access time;
query cancelling
e Constant sized; facilitate work-stealing and preemption.
e Pipeless dependent
o Volcano: oblivious to parallelism
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Figure 1: Idea of morsel-driven parallelism: R >, S ¥, T



Parallel Processing

e Hash table split to two pipelines. Thread local storage; avoid synch
e Scan and filter input T; build hash table HT(T) (Build and Probe Phases)
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Figure 2: Parallellizing the three pipelines of the sample query plan: (left) algebraic evaluation plan: (right) three- respectively
four-way parallel processing of each pipeline



Features

e Adaptive dispatcher
o This allows adjusting of resources and reaction to execution
speed during runtime.
o Reallocates morsels and tasks if one finishes early (work-stealing)
o Reduces/increases parallelism on threads
e NUMA-Aware; awareness of data locality
o Process T morsel-wise; store NUMA-locally.
o Pointers to hash table
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Parallel Operators

e Need to accept tuples in parallel for pipeline parallelization
e Awareness of parallelism
e Dispatcher awareness of data
o locality of morsels
o Data and computation locations
o Most execute on NUMA-local memory; faster
accesses vs. non-local memory.

o QOperator pipelines for workers, still elastic



Hash Join

and insert pointers into HT

Phase 2: scan NUMA-Iocalstorageare:a>
e Two tables (HT(T);HT(S))
e Build phase
o Materialize input tuples to '”:""" 4 %?if:xmﬂﬁk
thread local storage
o Input size known, empty
table of input size

éuse 1: process T morsel-wise and store NUMA—ioca>
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o Inserts pointers to tuples Q “j//

o Check matches
o Insert only; lookups after all inserts
o Low synchronization costs



Build Phase

Phase 2: scan NUMA-local storage area
and insert pointers into HT

@e 1: process T morsel-wise and store NUMA-Ioa}
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Grouping/Aggregation

Figure 8: Parallel aggregation
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Figure 9: Parallel merge sort

Performance dependent on number of distinct keys; cache misses

Phase 1: local pre-aggregation >

G_M 2: aggregate partition-wise

Figure 8: Parallel aggregation




Dispatcher

Preserve NUMA locality
Full elasticity
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One morsel at a time
Priority scheduling of queries

Load balancing

O

Prevent fast cores from waiting-

slow cores.

Lock-free Data Structures of Dispatcher
List of pending pipeline-jobs
(possibly belonging to different queries)
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Figure 5: Dispatcher assigns pipeline-jobs on morsels to
threads depending on the core



Dispatcher

e Assigns resources to parallel pipelines (tasks — worker threads)

e Aware of data locality of NUMA-local morsels; allow local execution.

e Cores are in different clusters with their
own local memory regions.

e Can still access memory in other clusters.

e Scheduling mechanism; allows flexible
parallel execution (elasticity).
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Figure 1: Idea of morsel-driven parallelism: R >, S x5 T



Implementation

e HyPer

o Main memory column database

o No intra-query parallelism

o JIT (Just-In-Time) Approach

m Running during execution, schedule is morsel-wise.

e QEProject

o Executable pipelines to dispatcher

o Observes data dependencies

o Temporary storage area for each thread/core



Implementation (Vectorwise)

o TPC-H system | geo. mean | sum | scal.
o Vectorwise; competitor system e T lael e
- Not NUMA_aware Vectorwise, full-disclosure settings 1.19s 412s| 84x

o HyPer achieves 30x speed up
o NUMA awareness important in s EEi 5 E5EE [EEEE
some cases ’[’: ééé”é é‘/ﬁ

o Non-adaptivity reduces in most

o All perform better than Vectorwise
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Figure 11: TPC-H scalability on Nehalem EX (cores 1-32 are “real”, cores 33-64 are “virtual™)
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Figure 11: TPC-H scalability on Nehalem EX (cores 1-32 are “real”, cores 33-64 are “virtual™)



Implementation (NUMA awareness)

Nehalem EX Sandy Bridge EP
| DRAM | | DRAM | | _DRAM | | DRAM |
25.6GB/s 51.2GB/s
socket0 NN socket1 socket0 R socket1
8 cores 8 cores 8 cores 8 cores
24M8 13 24M8 13 20M8 13 20ME L3
I x 12.8GB/s 16.0GB/s I
Eedirecoonal) [DeSrecTional)
socket3 M socket2 socket3 R socket2
8 cores 8 cores 8 cores 8 cores
24M8 13 2aM8 13 20M8 13 20M8 13

Figure 10: NUMA topologies, theoretical bandwidth




Implementation (NUMA awareness)

e NUMA-aware processing; lower latency and higher bandwidth
e Reducing of remote accesses in joins
e Alternatives
o OS Default (OS placement)
m Memory controller becomes a bottleneck
o Interleaved (robin round allocation)
m Reasonable not optimal

LEX N Nehalem EX Sandy Bridge EP bandwidth [GB/s] | latency [ns]

‘ geo. mean  max | geo. mean  max | local |  mix local | mix
OS default | 157x  495x | 240x  58Ix Nehalem EX | 93 60 l 161 | 186
interleaved 1.07x 1.24 x 1.58 501x Sandy Bndge EP | 121 41 101 | 257




Implementation (Elasticity)

e Parallelization shown to be fully elastic.
TPC-H queries
e Threads can switch between queries
dynamically.
o Succeeded in reassigning threads in
runtime and prioritizing.
e /S Static assignment in Volcano:
o 2nd test: input/threads = morsel size.
o Not too different w since query at once
o Another single-threaded process
reduces performance by 36.8%(vs 4.7%)
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Figure 13: Hlustration of morsel-wise processing and elasticity

SSB | time  scal read write remote QPI

# [s1 [x] |IGB/s] [GBA]  [%®] [%]

1.1 0.10 330 358 04 18 29

12 | 004 417 856 0.1 1 ——

13 004 426 856 0.1 1 -

2.1 011 442 256 0.7 13 17

22 | 015 451 372 0.1 2 19

23 006 363 438 0.1 3 25

3.1 029 307 248 1.0 37 21

32 | 009 383 373 04 7 2

33 006 407 510 0.1 2 27

34 006 405 519 0.1 2 28

4.1 026 365 434 03 34 M

42 | 023 351 433 03 28 33

43 [ 012 442 39.1 03 5 22

Table 3: Star Schema Benchmark (scale 50) on Nehalem EX



Implementation (Star Schema)

e Data warehousing scenario SSB | time scal | read write remote QPI

# [s] [x] |IGB/s] [GBis] [%®] [%]

e Speed up of 40x 11 | 010 330| 358 04 18 29
, >

o Large fact table, NUMA-local s %6 ocl B2 & 1 4

> 22 | 015 451 | 372 0.1 2 19

e Better scalability vs TPC-H 23 | 006 363 | 438 0l 32

o TPC-H more comol 3.1 [ 029 307 | 248 1.0 37 2l

- piex 32 009 383 | 373 04 7 2

o Complex joins and aggregations 33 | 006 407 | 510 0.1 2 27

o Single table 34 | 006 405 519 0.1 2 28

41 | 026 365 | 434 03 k¥ S ¥

42 | 023 351 | 433 03 28 33

43 | 002 442 | 391 0.3 5 2

Table 3: Star Schema Benchmark (scale 50) on Nehalem EX



Conclusion

e NUMA-awareness and runtime adaptivity is important; allows load
balancing, elasticity and reduces latency in parallelism.

e Oblivious operators are not always the best solution. (parallel-aware)

e Splitting task and morsels carefully is important for analytical query
performance.

e Possible to further reduce NUMA remote accesses.

e Morsel-driven parallelism performs better when handling multiple
threads and queries where speed and workload vary throughout
runtime.
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