Morsel-Driven Parallelism

Jason Banks

Problem

e Increasing multi-core parallelism > increasing single-thread
performance
e Plan-driven parallelism/volcano-style parallelism

©)
©)

Bottlenecks and load balancing issues; not flexible

Parallelism hidden from operators; not optimal partitioning results

due to lack of locality awareness.

Partitioning is static; load imbalances

Not NUMA aware; memory controllers decentralized to chips.

m Main memory databases; many-core allows parallelization,
but decentralization increases costs.

NUMA-Awareness

e Non-Uniform Memory Access
e Mem controllers — chips.
e Access between cores and
main memory not uniform.
e Access costs varied dependent
on chip location (decentralized)
e Memory hierarchies need to be
accounted for s.t. threads work on local data
e Local data accessed faster than non-local data
e Strategies: faster memory access > faster processors; limit memory
accesses

Example

e Processors accessing non-local data increases latency

e Bus length increases with more processors
o Scalability problems; increased latency; memory hierarchy is important.

|
Control Bus :
Address Bus : System Bus

DataBus

Adaptive morsel-driven query execution

Parallel query evaluation framework

Task distribution at runtime; fully elastic

Input processed by constant-sized work units
NUMA-aware

Morsel-wise scheduling for operators; hash-table sharing.
Worker threads are equal to hardware threads.

Features

e Morsels (small fragments of input data) scheduled to threads.
o Reduces load imbalances, workers finish on time.
o Allocation of memory to decentralized chips; reduces access time;
query cancelling
e Constant sized; facilitate work-stealing and preemption.
e Pipeless dependent
o Volcano: oblivious to parallelism

v &)

X obe{10)
sl

Dispatcher

Figure 1: Idea of morsel-driven parallelism: R >, S ¥, T

Parallel Processing

e Hash table split to two pipelines. Thread local storage; avoid synch
e Scan and filter input T; build hash table HT(T) (Build and Probe Phases)

Probe HT(S)

Probe HT(S)

0'\ PL
.. \ - s«!na
(s
" l SanR
l Scan R
ScanR

Figure 2: Parallellizing the three pipelines of the sample query plan: (left) algebraic evaluation plan: (right) three- respectively
four-way parallel processing of each pipeline

Features

e Adaptive dispatcher
o This allows adjusting of resources and reaction to execution
speed during runtime.
o Reallocates morsels and tasks if one finishes early (work-stealing)
o Reduces/increases parallelism on threads
e NUMA-Aware; awareness of data locality
o Process T morsel-wise; store NUMA-locally.
o Pointers to hash table

B A
o U
X ’woeeuo)
N

Dispatcher

Figure 1: Idea of morsel-driven parallelism: R, S ¥, T

Parallel Operators

e Need to accept tuples in parallel for pipeline parallelization
e Awareness of parallelism
e Dispatcher awareness of data
o locality of morsels
o Data and computation locations
o Most execute on NUMA-local memory; faster
accesses vs. non-local memory.

o QOperator pipelines for workers, still elastic

Hash Join

and insert pointers into HT

Phase 2: scan NUMA-Iocalstorageare:a>
e Two tables (HT(T);HT(S))
e Build phase
o Materialize input tuples to '”:""" 4 %?if:xmﬂﬁk
thread local storage
o Input size known, empty
table of input size

éuse 1: process T morsel-wise and store NUMA—ioca>

ES

green core

constructed st [
< /
e Probe phase - my
. ,'(_\(\\0
o Inserts pointers to tuples Q “j//

o Check matches
o Insert only; lookups after all inserts
o Low synchronization costs

Build Phase

Phase 2: scan NUMA-local storage area
and insert pointers into HT

@e 1: process T morsel-wise and store NUMA-Ioa}

global

Probe Phase

Storage
area of

Storage

area of k -
green core
_/\

Storage E

area of

red core

RS

Grouping/Aggregation

Figure 8: Parallel aggregation

ﬂ]]]]Il]I]II]]]]]

4’ 3 1y i
Q.S global 1/3 S S glo,
€ D:[D%]h

lIOLOl 1/3 -

l

Compute global separators

: M:Xebalsepu'uon

\ A AL AAA

'." o® ““:". ~‘:.'

'merqe merge merge

Figure 9: Parallel merge sort

Performance dependent on number of distinct keys; cache misses

Phase 1: local pre-aggregation >

G_M 2: aggregate partition-wise

Figure 8: Parallel aggregation

Dispatcher

Preserve NUMA locality
Full elasticity

©)

O

One morsel at a time
Priority scheduling of queries

Load balancing

O

Prevent fast cores from waiting-

slow cores.

Lock-free Data Structures of Dispatcher
List of pending pipeline-jobs
(possibly belonging to different queries)

dispatch(0)

. v v .32 i".‘ v
(virtual) lists of morsels to.be procassed
(colors indicates on what Socket/cdre

the morsel is located)

Socket

Core | Core
Core

Core
Core Core | Core Core

M| |D

Core | Core | Core | Core | Core

Core | Core | Core | Core | Core

Socket

st

Socket

Example NUMA Multi-Core Server with 4 Sockets and 32 Cores

Figure 5: Dispatcher assigns pipeline-jobs on morsels to
threads depending on the core

Dispatcher

e Assigns resources to parallel pipelines (tasks — worker threads)

e Aware of data locality of NUMA-local morsels; allow local execution.

e Cores are in different clusters with their
own local memory regions.

e Can still access memory in other clusters.

e Scheduling mechanism; allows flexible
parallel execution (elasticity).

HT(S)

A
8
Vs FT E1 ™9
’uohe(lm

18133
\27 10

~<n<n3

EERE

w

~
wn
wn

M
c
(]

Figure 1: Idea of morsel-driven parallelism: R >, S x5 T

Implementation

e HyPer

o Main memory column database

o No intra-query parallelism

o JIT (Just-In-Time) Approach

m Running during execution, schedule is morsel-wise.

e QEProject

o Executable pipelines to dispatcher

o Observes data dependencies

o Temporary storage area for each thread/core

Implementation (Vectorwise)

o TPC-H system | geo. mean | sum | scal.
o Vectorwise; competitor system e T lael e
- Not NUMA_aware Vectorwise, full-disclosure settings 1.19s 412s| 84x

o HyPer achieves 30x speed up
o NUMA awareness important in s EEi 5 E5EE [EEEE
some cases ’[’: ééé”é é‘/ﬁ

o Non-adaptivity reduces in most

o All perform better than Vectorwise

17
20 fey
10 =
0

M
N Y

N;

N

)

)

N

Figure 11: TPC-H scalability on Nehalem EX (cores 1-32 are “real”, cores 33-64 are “virtual™)

(ull-fiedged)

' HyPer (not NUMA aware)

~—=—| HyPer (non-adaptive)

!
biT

Vectorwise

{

f

]

1

641

EEEE
éﬁféfq

16

&
e

T
32 48 641

1

64 1

= Ve = Ve

T
32 48

1

64 1

Ll
s P e

40 -
30 -
20 -
10 =
0
£ w0
» <
30
-
Q
10 =
i

40 -

30 =
20 -
10 =
0

T
1

1

Figure 11: TPC-H scalability on Nehalem EX (cores 1-32 are “real”, cores 33-64 are “virtual™)

Implementation (NUMA awareness)

Nehalem EX Sandy Bridge EP
| DRAM | | DRAM | | _DRAM | | DRAM |
25.6GB/s 51.2GB/s
socket0 NN socket1 socket0 R socket1
8 cores 8 cores 8 cores 8 cores
24M8 13 24M8 13 20M8 13 20ME L3
I x 12.8GB/s 16.0GB/s I
Eedirecoonal) [DeSrecTional)
socket3 M socket2 socket3 R socket2
8 cores 8 cores 8 cores 8 cores
24M8 13 2aM8 13 20M8 13 20M8 13

Figure 10: NUMA topologies, theoretical bandwidth

Implementation (NUMA awareness)

e NUMA-aware processing; lower latency and higher bandwidth
e Reducing of remote accesses in joins
e Alternatives
o OS Default (OS placement)
m Memory controller becomes a bottleneck
o Interleaved (robin round allocation)
m Reasonable not optimal

LEX N Nehalem EX Sandy Bridge EP bandwidth [GB/s] | latency [ns]

‘ geo. mean max | geo. mean max | local | mix local | mix
OS default | 157x 495x | 240x 58Ix Nehalem EX | 93 60 l 161 | 186
interleaved 1.07x 1.24 x 1.58 501x Sandy Bndge EP | 121 41 101 | 257

Implementation (Elasticity)

e Parallelization shown to be fully elastic.
TPC-H queries
e Threads can switch between queries
dynamically.
o Succeeded in reassigning threads in
runtime and prioritizing.
e /S Static assignment in Volcano:
o 2nd test: input/threads = morsel size.
o Not too different w since query at once
o Another single-threaded process
reduces performance by 36.8%(vs 4.7%)

worser 1 [T

worker 2

worker 3 “ !
qi13 :.un ql4 s'nn qle f::-:h time
Figure 13: Hlustration of morsel-wise processing and elasticity

SSB | time scal read write remote QPI

[s1 [x] |IGB/s] [GBA] [%®] [%]

1.1 0.10 330 358 04 18 29

12 | 004 417 856 0.1 1 ——

13 004 426 856 0.1 1 -

2.1 011 442 256 0.7 13 17

22 | 015 451 372 0.1 2 19

23 006 363 438 0.1 3 25

3.1 029 307 248 1.0 37 21

32 | 009 383 373 04 7 2

33 006 407 510 0.1 2 27

34 006 405 519 0.1 2 28

4.1 026 365 434 03 34 M

42 | 023 351 433 03 28 33

43 [012 442 39.1 03 5 22

Table 3: Star Schema Benchmark (scale 50) on Nehalem EX

Implementation (Star Schema)

e Data warehousing scenario SSB | time scal | read write remote QPI

[s] [x] |IGB/s] [GBis] [%®] [%]

e Speed up of 40x 11 | 010 330| 358 04 18 29
, >

o Large fact table, NUMA-local s %6 ocl B2 & 1 4

> 22 | 015 451 | 372 0.1 2 19

e Better scalability vs TPC-H 23 | 006 363 | 438 0l 32

o TPC-H more comol 3.1 [029 307 | 248 1.0 37 2l

- piex 32 009 383 | 373 04 7 2

o Complex joins and aggregations 33 | 006 407 | 510 0.1 2 27

o Single table 34 | 006 405 519 0.1 2 28

41 | 026 365 | 434 03 k¥ S ¥

42 | 023 351 | 433 03 28 33

43 | 002 442 | 391 0.3 5 2

Table 3: Star Schema Benchmark (scale 50) on Nehalem EX

Conclusion

e NUMA-awareness and runtime adaptivity is important; allows load
balancing, elasticity and reduces latency in parallelism.

e Oblivious operators are not always the best solution. (parallel-aware)

e Splitting task and morsels carefully is important for analytical query
performance.

e Possible to further reduce NUMA remote accesses.

e Morsel-driven parallelism performs better when handling multiple
threads and queries where speed and workload vary throughout
runtime.

Bibliography

e hitps://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/

e htips://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:
~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20
method%200f.symmetric%20multiprocessing%20(%20SMP %20)%20system.

https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/
https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system
https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system
https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system

