
Morsel-Driven Parallelism
Jason Banks



Problem

● Increasing multi-core parallelism > increasing single-thread 
performance

● Plan-driven parallelism/volcano-style parallelism
○ Bottlenecks and load balancing issues; not flexible
○ Parallelism hidden from operators; not optimal partitioning results 

due to lack of locality awareness. 
○ Partitioning is static; load imbalances
○ Not NUMA aware; memory controllers decentralized to chips.

■ Main memory databases; many-core allows parallelization, 
but decentralization increases costs.



NUMA-Awareness

● Non-Uniform Memory Access
● Mem controllers → chips.
● Access between cores and 

main memory not uniform.
● Access costs varied dependent

on chip location (decentralized)
● Memory hierarchies need to be

accounted for s.t. threads work on local data
● Local data accessed faster than non-local data
● Strategies: faster memory access > faster processors; limit memory 

accesses



Example

● Processors accessing non-local data increases latency
● Bus length increases with more processors

○ Scalability problems; increased latency; memory hierarchy is important.



Adaptive morsel-driven query execution

● Parallel query evaluation framework
● Task distribution at runtime; fully elastic
● Input processed by constant-sized work units
● NUMA-aware
● Morsel-wise scheduling for operators; hash-table sharing.
● Worker threads are equal to hardware threads.



Features

● Morsels (small fragments of input data) scheduled to threads.
○ Reduces load imbalances, workers finish on time.
○ Allocation of memory to decentralized chips; reduces access time; 

query cancelling
● Constant sized; facilitate work-stealing and preemption. 
● Pipeless dependent

○ Volcano: oblivious to parallelism 



Parallel Processing
● Hash table split to two pipelines. Thread local storage; avoid synch
● Scan and filter input T; build hash table HT(T) (Build and Probe Phases)



Features

● Adaptive dispatcher
○ This allows adjusting of resources and reaction to execution 

speed during runtime.
○ Reallocates morsels and tasks if one finishes early (work-stealing)
○ Reduces/increases parallelism on threads

● NUMA-Aware; awareness of data locality
○ Process T morsel-wise; store NUMA-locally.
○ Pointers to hash table



Parallel Operators
● Need to accept tuples in parallel for pipeline parallelization

● Awareness of parallelism

● Dispatcher awareness of data 

○ locality of morsels

○ Data and computation locations

○ Most execute on NUMA-local memory; faster

accesses vs. non-local memory.

○ Operator pipelines for workers, still elastic



Hash Join

● Two tables (HT(T);HT(S))
● Build phase

○ Materialize input tuples to
thread local storage 

○ Input size known, empty 
table of input size 
constructed

● Probe phase
○ Inserts pointers to tuples
○ Check matches
○ Insert only; lookups after all inserts
○ Low synchronization costs



Build Phase



Probe Phase



Grouping/Aggregation

● Performance dependent on number of distinct keys; cache misses



Dispatcher

● Preserve NUMA locality
● Full elasticity

○ One morsel at a time
○ Priority scheduling of queries

● Load balancing 
○ Prevent fast cores from waiting for

slow cores.



Dispatcher

● Assigns resources to parallel pipelines (tasks → worker threads)
● Aware of data locality of NUMA-local morsels; allow local execution.
● Cores are in different clusters with their 

own local memory regions.
● Can still access memory in other clusters.
● Scheduling mechanism; allows flexible 

parallel execution (elasticity).



Implementation

● HyPer
○ Main memory column database
○ No intra-query parallelism
○ JIT (Just-In-Time) Approach

■ Running during execution, schedule is morsel-wise.
● QEProject

○ Executable pipelines to dispatcher
○ Observes data dependencies
○ Temporary storage area for each thread/core



Implementation (Vectorwise)

● TPC-H
○ Vectorwise; competitor system

■ Not NUMA-aware
○ HyPer achieves 30x speed up
○ NUMA awareness important in 

some cases
○ Non-adaptivity reduces in most
○ All perform better than Vectorwise





Implementation (NUMA awareness)



Implementation (NUMA awareness)

● NUMA-aware processing; lower latency and higher bandwidth
● Reducing of remote accesses in joins
● Alternatives

○ OS Default (OS placement)
■ Memory controller becomes a bottleneck

○ Interleaved (robin round allocation)
■ Reasonable not optimal



Implementation (Elasticity)

● Parallelization shown to be fully elastic.
● TPC-H queries
● Threads can switch between queries 

dynamically.
○ Succeeded in reassigning threads in 

runtime and prioritizing.
● VS Static assignment in Volcano:

○ 2nd test: input/threads = morsel size.
○ Not too different w since query at once
○ Another single-threaded process 

reduces performance by 36.8%(vs 4.7%)



Implementation (Star Schema)

● Data warehousing scenario
● Speed up of 40x
● Large fact table, NUMA-local
● Faster aggregation
● Better scalability vs TPC-H

○ TPC-H more complex
○ Complex joins and aggregations
○ Single table



Conclusion

● NUMA-awareness and runtime adaptivity is important; allows load 
balancing, elasticity and reduces latency in parallelism. 

● Oblivious operators are not always the best solution. (parallel-aware)
● Splitting task and morsels carefully is important for analytical query 

performance.
● Possible to further reduce NUMA remote accesses.
● Morsel-driven parallelism performs better when handling multiple 

threads and queries where speed and workload vary throughout 
runtime.



Bibliography

● https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/ 
● https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:

~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20
method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system. 

https://frankdenneman.nl/2016/07/07/numa-deep-dive-part-1-uma-numa/
https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system
https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system
https://whatis.techtarget.com/definition/NUMA-non-uniform-memory-access#:~:text=NUMA%20(non%2Duniform%20memory%20access)%20is%20a%20method%20of,symmetric%20multiprocessing%20(%20SMP%20)%20system

