
ADAPTIVE
ADAPTIVE
INDEXING

F E L I X M A R T I N S C H U H K N E C H T , J E N S D I T T R I C H , L A U R E N T
L I N D E N

Proprietary

ALGORITHMS COME AND GO

The Dodo Bird, a flightless bird with no natural
predators that went extinct circa 1681 after

discovered by humans as a source of meat in the
15th century

Proprietary

CURRENT STATE OF THE ART
(INDEXING)

Proprietary

INTRODUCING ADAPTIVE ADAPTIVITY

Proprietary

FIRST GENERAL PRINCIPLE

• Make no assumptions

Proprietary

RATIONALE

• By making no assumptions, we reduce overhead such as machine pre-processing, and labor
costs.

• Also, we have no knowledge of the incoming workload.

Proprietary

OVERVIEW

• The algorithm consists of 3 main components:

1. Index refinement generalization (partition-in-K)

2. Adaptive reorganization => (picking a good K value)

3. Defusing skewed key distributions (Skew Correction)

Proprietary

GENERAL STRATEGY
• Defer index maintenance until query processing

• Reorganize data dynamically as queries come in to improve queries

Proprietary

DEEP DIVE: CRACKING
• Database Cracking: create indexes adaptively and incrementally as a side-product of query

processing.

• Common Methods: Standard Cracking, Stochastic Cracking

Standard
Cracking

Proprietary

HANDLING THE FIRST QUERY

INDEX REFINEMENT GENERALIZATION

Proprietary

HANDLING THE FIRST QUERY

INDEX REFINEMENT GENERALIZATION

Proprietary

DEEP DIVE: TLB THEORY

INDEX REFINEMENT GENERALIZATION

Effective Memory Access Time
(EMAT):

= WEIGHTED COST OF HIT
+ WEIGHTED COST OF MISS

= H * (C+M) + (1-H) * (C+2M)

H = Hit ratio of TLB
M = Memory access time
C = TLB access time

Proprietary

DEEP DIVE: TLB EXAMPLE

INDEX REFINEMENT GENERALIZATION

Goes back to the main page table

Quickly reads from RAM

(RAM)

Very expensive!

Example:
size: 12 bits – 4,096 entries
hit time:1 clock cycle
miss penalty: 30 clock cycles
miss rate: 1%

Effective Memory Access
Time (EMAT):
(1+30) × 99% +
(1 + (2 x 30)) × 1% =
31.30

(31.30 clock cycles per
memory access)

Proprietary

DEEP DIVE: TLB W/ SW BUFFER

INDEX REFINEMENT GENERALIZATION

Goes back to the main page table

Quickly reads from RAM

(RAM)

Very expensive!

Example:
size: 12 bits – 4,096 entries
hit time:1 clock cycle
miss penalty: 30 clock cycles
miss rate: 0.5%

Effective Memory Access
Time (EMAT):
(1+30) × 99.5% +
(1 + (2 x 30)) × 0.5% =
31.15

(31.15 clock cycles per
memory access)

… 31 is best we can do!

Proprietary

HANDLING SUBSEQUENT QUERIES
Open Question:

How do we adjust
fanout for
subsequent queries?

Solution:

We learn by
experimentation,

Smaller fanout for
the larger inputs,

Larger fanout for
the smaller inputs

Penalty is
acceptable.

INDEX REFINEMENT GENERALIZATION

Proprietary

CALCULATING PARTITIONS

ADAPTIVE REORGANIZATION

Proprietary

CALCULATING PARTITIONS

ADAPTIVE REORGANIZATION

Proprietary

CALCULATING PARTITIONS

ADAPTIVE REORGANIZATION

Proprietary

CALCULATING PARTITIONS

ADAPTIVE REORGANIZATION

Proprietary

ADJUSTING SKEW

DEFUSING SKEWED KEY DISTRIBUTIONS

Proprietary

RESULTS
• 2x Speedup over the best baseline

• Faster convergence compared to the state-of the art (almost immediate)

• Suitable for multiple workloads

Proprietary

PERFORMANCE

DC = standard cracking

DD1R = stochastic cracking

HCS = hybrid cracking

TOP PERFORMANCE:
ADAPTIVE INDEXING +
SIMULATED
ANNEALING

… 2X FASTER
THAN THE BEST!

Proprietary

BASELINES
• To better help our understanding of the final results, we see this chart for some help in

understanding other methods.

(DC)

Proprietary

BASELINES
• To better help our understanding of the final results, we see this chart for some help in

understanding other methods.

(DC)

Proprietary

BASELINES
• To better help our understanding of the final results, we see this chart for some help in

understanding other methods.

(DC)

Proprietary

RESPONSE TIME

Meta-adaptive indexing shows
highly stable convergence!

DC = standard cracking

DD1R = stochastic cracking

HCS = hybrid cracking

Proprietary

RESPONSE TIME

MAINTAINS FAST
CONVERGANCE WITH
DIFFICULT DATA

DC = standard cracking

DD1R = stochastic cracking

HCS = hybrid cracking

Proprietary

CAVEATS

• Meta-adaptivity is still sensitive to certain workloads

• Very large workloads that don’t fit

• Also, what if the data being queried is antagonistic to the algorithm?

Proprietary

IDEAS FOR IMPROVEMENT

Proprietary

IDEAS FOR IMPROVEMENT

Adding Statistics for:

• Modes: Calculating top-n modes for skew detection

• Variance: Incoming queries can be indexed for range variance to make indexing more

Formula for varianceFormula for z-score

Proprietary

THANK YOU!

