ADAPTIVE
ADAPTIVE
INDEKING

FELIX MARTIN SCHNUNKNECHT, JENS DITTRICH, LAURENT
LINDEN

ALGORITHMS COME AND GO

The Dodo Bird, a flightless bird with no natural
predators that went extinct circa 1681 after
discovered by humans as a source of meat in the
| 5t century

CURRENT STATE OF THE ART

1000

Query Response Time [ms]

100

High Variance

10 |

T

R |

bonvéx Hull
Individual Points ——

10 100 1000
Query Sequence

Low Convergence Speed

-
o

/\\/AJW\%

"

Individual Points ——

Bezier Smoothed

< 100000
<

()

©

< 10000
=

L

C

£ 1000
o)

L

2

T 100}
()

£

-

()]

n

c

o

Q

0

()

o

1 10

100

Query Sequence

INTRODUCING ADAPTIVE ADAPTIVITY

* Make no assumptions

FIRST GENERAL PRINCIPLE

You W’
YOU KNOW WHAT HAPPENS
WHEN YOLU ASSUME—
I DONT.
YET YOU'RE CONFIDENTLY
ASSERTING THAT I. DO.

...OH. HM.

CHECKANDME

P

RATIONALE

* By making no assumptions, we reduce overhead such as machine pre-processing, and labor
costs.

* Also, we have no knowledge of the incoming workload.

* The algorithm consists of 3 main components:
|. Index refinement generalization (partition-in-K)
2. Adaptive reorganization => (picking a good K value)

3. Defusing skewed key distributions (Skew Correction)

GENERAL STRATEGY

* Defer index maintenance until query processing

* Reorganize data dynamically as queries come in to improve queries

Index Index Index Index
Column Column Column Column
>=6
<13
? > >=13 > ><=2173
Qo=[13,42) Q:1=[6,27) QE...
< 42

>=42

* Database Cracking: create indexes adaptively and incrementally as a side-product of query
processing.

« Common Methods: Standard Cracking, Stochastic Cracking

Column A: Cracker column of A Cracker column of A
13 4 4
Qs ’ 16 9 2
select * e, 4 A 1 .
i, i b Piece 1: A<=7
from R o 7 | Piecet: 3 <
Standard where R.A> 10 RN 1| A<=10 6
Crackin and RA< 14 1277 3 7
g 7 Q1 8 | ‘v 002 9
A ofooleonyy™ | 6 | (in-place) g | Plece27<A<=10
QRN 9 13 Piece 2: 13
select * 3 12 | 10<A<14. ¢ |[12 | Piece3:10<A<14
from R 14 11 N
where RA>7 11 16 Piece 3: S, [N : .
and R.A <= 16 8 19 | sigzeg=swmifiqg| Pleced 14<=A<=16
6 14 19 Piece 5: 16 < A

HANDLING THE FIRST QUERY

Base Table Index Column
36 13
13 18
67 out-of-place 5
42 36
99 / 42
78 K \’ 28
18 47
85 67
28 partition-in-k 55
55 99

5 78
47 85

INDEX REFINEMENT GENERALIZATION

HANDLING THE FIRST QUERY

Base Table Index Column

36
13
67
42
99

78
18 \
s A 36 A 42

85

_ mm256 stream s1256 36

42

28 Softwirlf;fréznaged Hardware
55 write-combine
buffer

47

INDEX REFINEMENT GENERALIZATION

DEEP DIVE: TLB THEORY

Logical Address

Effective Memory Access Time ~ CPU ‘ et
(EMAT): \ | \

\—Page number Frame number
= WEIGHTED COST OF HIT

+ WEIGHTED COST OF MISS of T 1 \ BQH“I"T“"Y 'e‘”[—

| = PHYSICAL

= H*(C+M) + (I-H) * (C+2M) — T 1 “ T—— MEMORY
ad (RAMY)
H = Hit ratio of TLB Very expensive! TLB MISS (
¥

M = Memory access time >

Goes back to the main page table

C =TLB access time

INDEX REFINEMENT GENERALIZATION

Example:

size: |2 bits — 4,096 entries
hit time:| clock cycle

miss penalty: 30 clock cycles
miss rate: | %

Effective Memory Access
Time (EMAT):

(1+30) x 99% +

(I +(2x30)) x 1% =

31.30

(31.30 clock cycles per
memory access)

Logical Address

DEEP DIVE: TLB EXAMPLE

Quickly reads from RAM

PHYSICAL

- — " MEMORY

Page number Frame number
—.’-—_-_..
’a——
Y L TBHIT

— [1

—

—»

Very expensive! TLB MISS

b
> F

Goes back to the main page table
Page
Table

(RAM)

INDEX REFINEMENT GENERALIZATION

DEEP DIVE: TLB W/ SW BUFFER

Logical Address

CPU

Example:
size: |2 bits — 4,096 entries Page number Frame number
hit time:| clock cycle __l
miss penalty: 20 clock cycles '+ Quickly reads from RAM
miss rate: 0.5% i—: i vSICAL
Effective Memory Access —>—[I_‘ . — MEMORY
Time (EMAT): — | RV
(1+30) x 99.5% +
(I +(2x30)) x0.5% =
31.15 Very expensive! TLB MISS
(3 115 clock C)’C|eS per Goes back to the main page table :
memory access) " W

Page

Table

... 31 is best we can do!

INDEX REFINEMENT GENERALIZATION

Open Question:

How do we adjust
fanout for

subsequent queries?

Solution:

We learn by
experimentation,

Smaller fanout for
the larger inputs,

Larger fanout for
the smaller inputs

Penalty is
acceptable.

Runtime in [s]

Qo

. o
gAY

HANDLING SUBSEQUENT QUERIES

Qi,i>0

B Ol'n-o!-pllace crack-intwo + In-pla'ce crack-intwo ssssssss I
Out-of-place radix partitioning =

® 8 3 8
&

256
512
1024
2048
4096
8192
16384

Partitioning Fanout

bfirst
bmin
b'm.in

f(s,q) =
/ \ boort

partition size

32768

Input data size
4 32KB (L1) 256KB (L2) 2MB (Page) 10MB (L3)
2x In-pllace crack-in-two mmmm—m ‘ ' ' :
2 x In-place radix partitioning —
30
25 \1
g
—_— 20 =
=
[}
£
€ 15}
=3
c

else if 8 > tadapt

else if s > tgort

else.

query sequence number

11/20

INDEX REFINEMENT GENERALIZATION

CALCULATING PARTITIONS

Parameter Meaning
brirst Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts.
brin Minimal number of fan-out bits during adaption.
brnax Maximal number of fan-out bits during adaption.
tsort Threshold below which sorting is triggered.
boort Number of fan-out bits required for sorting.
skewtol Threshold for tolerance of skew.
b first ifg=0
bmin else if s > todapt
f(s,q) = Brin + [(bma,,,. — byin) - (1 o ﬂ else if 5 > toons
bsort else.

ADAPTIVE REORGANIZATION

CALCULATING PARTITIONS

bfz'rst if q — 0

bmin else if s > tadapt
f(S, q) o bmzn + [(bmaw — bmzn)) (1 T tadsapt)_‘ else if s > tsort

bso'r't else.

ADAPTIVE REORGANIZATION

CALCULATING PARTITIONS

Parameter Meaning
brirst Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts.
brin Minimal number of fan-out bits during adaption.
brnax Maximal number of fan-out bits during adaption.
tsort Threshold below which sorting is triggered.
boort Number of fan-out bits required for sorting.
skewtol Threshold for tolerance of skew.

(byirst if g =0

bmin else if s > tadapt

f(s,q) = S brin + [(bmam — byin) - (1 — tadsapt)] else if 5 > toon
\bso,ﬁt else.

ADAPTIVE REORGANIZATION

CALCULATING PARTITIONS

bf'i,rst lfq =0

f(bmin else if s > tadapt
$,0) =3 o b — by (1 -
bmzn + bmam bmzn 1 " else if s > tsort
adapt
b SO 'rvt else .
Parameter Meaning
brirst Number of fan-out bits in the very first query.
tadapt Threshold below which fan-out adaption starts.
bmin Minimal number of fan-out bits during adaption.
bmax Maximal number of fan-out bits during adaption.
tsort Threshold below which sorting is triggered.
bsort Number of fan-out bits required for sorting.
skewtol Threshold for tolerance of skew.

ADAPTIVE REORGANIZATION

ADJUSTING SKEW

2. 3.
Input ~Pariion CI :lienfn Partition C{ Zienfn
out-of-place in-place
00 - 0000 Bih 0000
bfirst=2 bits bmin=4 bits v
+ ooooooooo
Histogram 0001 ce
on 00 v
X rratars
E
I
g: 0011 0011(
R
L
F‘ 6.1 07 01 01
v v v
BSSE 7
Birias PRI 5 .
v Y v
e = 7
v v v
A\ 4

DEFUSING SKEWED KEY DISTRIBUTIONS

RESULTS

* 2x Speedup over the best baseline
* Faster convergence compared to the state-of the art (almost immediate)

* Suitable for multiple workloads

PERFORMANCE

UNIFORM [0,2%%)

Accumulated Query Response Times B
DC = standard cracking * Key range
DD IR = stochastic cracking DC = DD1R mmm HCS mw)
HCS = hybrid cracking Adaptive Adaptive Index (Manually configured) =~ .
Adaptive Adaptive Index{Simulated annealing configured
25 T T - . - =T A’T’D
e) :
|_
g bﬁrst:10
‘,8,- L i bmin=3
< | bmas=6
TOP PERFORMANCE: s °f | 1 todapi=64MB
£ tsort=256 KB
ADAPTIVE INDEXING + 3 L |
SIMULATED =
ANNEALING :
RANDOM SKEW PERIODIC SEQUENTIAL ZOOMOUTALT ZOOMINALT

... 2X FASTER
THAN THE BEST!

=

] Qﬁery .-SAec.;uénc‘e

* To better help our understanding of the final results, we see this chart for some help in
understanding other methods.

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array _k

0 low high k
(DC) Cracking cms e cs——————————————

0 low high c2 ci k
DDC — T S —
0 low high r2 r1 k
DDR eos» e cssssssss essssssssssssss——. G
0 low high k
DD1C ——g_C1_
0 low high r1 k
DDIR o cass e G
0 ri k
MDD1R C———

low high

—

Figure 3: Cracking algorithms in action.

* To better help our understanding of the final results, we see this chart for some help in
understanding other methods.

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array —k

0 low high k
(DC) Cracking o cas cs————————

0 low high c2 ci k
DDC — T S —
0 low high r2 r1 k
DDR eos» e cssssssss essssssssssssss——. G
0 low high k
DD1C ——g_C1_
0 low high r1 k
DDIR o cass e G
0 ri k
MDD1R C———

low high

—

Figure 3: Cracking algorithms in action.

* To better help our understanding of the final results, we see this chart for some help in
understanding other methods.

Initial array contains values in [0-k], Query asks for range [low-high]
0
Initial Array—k

0 low high k
(DC) Cracking oo cas c————————————

0 low high c¢2 ci k
DDC — T S —

0 low high r2 r1 k
DDR eos» e cssssssss essssssssssssss——. G

0 low high k
DD1C ——g_C1_

0 low high r1 k
DDIR coms cs o G

0 ri k
MDD1R C———

low high

—

Figure 3: Cracking algorithms in action.

RESPONSE TIME

UNIFORM [0,2%%)

Individual Query Response Times 18
S
DC = standard cracking - Key range
DD IR = stochastic cracking RANDOM
HCS = hybrid cracking DC e DD1R® HCS ® Sort + Binary Search of
Adaptive Adaptive Index (Manually configured) 3|
10000 | . — . A e . . 5
[duéry Sequence
g 1@! 1 bfirst=10
,g - bmin=3
’_
% 100 ¢ E tadapt=64MB
. . . I] f—
Meta-adaptive indexing shows z taort=eoth il
: 3
highly stable convergence! 2 10
%
1 r

1 10 100 1000
Query Sequence

RESPONSE TIME

Individual Query Response Times 1 l

DC = standard cracking Key range
DD IR = stochastic cracking | RANDOM
= - i DC e DD1R® HCS * Sort + Binary Search ® of
HCS = hybrid cracking Adaptive Adaptive Index (Manually configured) 5|
10000 : B = , 3
/ E) Query Sequence
g ik ° _ E bfirst=10
.qé ’ V ; bmin=3
F ’ bmaz—=6
2 toof | o° tadapt=64MB
s tsort=256KB
MAINTAINS FAST g ’
s}
CONVERGANCEWITH 2 1o}
B
DIFFICULT DATA ;
1

Query Sequence

18/20

CAVEATS

* Meta-adaptivity is still sensitive to certain workloads
* Very large workloads that don'’t fit

* Also, what if the data being queried is antagonistic to the algorithm?

There is no more silver bullet.

IDEAS FOR IMPROVEMENT

Concurrency

IDEAS FOR IMPROVEMENT

Adding Statistics for:
* Modes: Calculating top-n modes for skew detection

* Variance: Incoming queries can be indexed for range variance to make indexing more

¥ —B » _ 2 (x—p)°

0/0: N

Formula for z-score Formula for variance

THANK YOU!

