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ALGORITHMS COME AND GO

The Dodo Bird, a flightless bird with no natural 
predators that went extinct circa 1681 after 

discovered by humans as a source of meat in the 
15th century
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CURRENT STATE OF THE ART 
(INDEXING)
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INTRODUCING ADAPTIVE ADAPTIVITY
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FIRST GENERAL PRINCIPLE

• Make no assumptions
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RATIONALE

• By making no assumptions, we reduce overhead such as machine pre-processing, and labor 
costs. 

• Also, we have no knowledge of the incoming workload.



Proprietary

OVERVIEW

• The algorithm consists of 3 main components:

1. Index refinement generalization (partition-in-K) 

2. Adaptive reorganization => (picking a good K value)

3. Defusing skewed key distributions  (Skew Correction)
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GENERAL STRATEGY
• Defer index maintenance until query processing

• Reorganize data dynamically as queries come in to improve queries
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DEEP DIVE: CRACKING
• Database Cracking: create indexes adaptively and incrementally as a side-product of query 

processing. 

• Common Methods: Standard Cracking, Stochastic Cracking

Standard
Cracking
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HANDLING THE FIRST QUERY

INDEX REFINEMENT GENERALIZATION 
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HANDLING THE FIRST QUERY

INDEX REFINEMENT GENERALIZATION 
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DEEP DIVE: TLB THEORY

INDEX REFINEMENT GENERALIZATION 

Effective Memory Access Time 
(EMAT):

= WEIGHTED COST OF HIT
+  WEIGHTED COST OF MISS

= H * (C+M) + (1-H) * (C+2M)

H = Hit ratio of TLB
M = Memory access time
C = TLB access time
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DEEP DIVE: TLB EXAMPLE

INDEX REFINEMENT GENERALIZATION 

Goes back to the main page table

Quickly reads from RAM

(RAM)

Very expensive!

Example:
size: 12 bits – 4,096 entries
hit time:1 clock cycle
miss penalty: 30 clock cycles
miss rate: 1%

Effective Memory Access 
Time (EMAT):
(1+30) × 99% + 
(1 + (2 x 30)) × 1% = 
31.30

(31.30 clock cycles per 
memory access)
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DEEP DIVE: TLB W/ SW BUFFER

INDEX REFINEMENT GENERALIZATION 

Goes back to the main page table

Quickly reads from RAM

(RAM)

Very expensive!

Example:
size: 12 bits – 4,096 entries
hit time:1 clock cycle
miss penalty: 30 clock cycles
miss rate:  0.5%

Effective Memory Access 
Time (EMAT):
(1+30) × 99.5% + 
(1 + (2 x 30)) × 0.5% = 
31.15

(31.15 clock cycles per 
memory access) 

… 31 is best we can do!
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HANDLING SUBSEQUENT QUERIES
Open Question: 

How do we adjust 
fanout for 
subsequent queries?

Solution:

We learn by 
experimentation,

Smaller fanout for 
the larger inputs,

Larger fanout for 
the smaller inputs

Penalty is 
acceptable.

INDEX REFINEMENT GENERALIZATION 
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CALCULATING PARTITIONS

ADAPTIVE REORGANIZATION
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CALCULATING PARTITIONS

ADAPTIVE REORGANIZATION
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ADJUSTING SKEW

DEFUSING SKEWED KEY DISTRIBUTIONS
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RESULTS
• 2x Speedup over the best baseline

• Faster convergence compared to the state-of the art (almost immediate)

• Suitable for multiple workloads
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PERFORMANCE

DC = standard cracking

DD1R = stochastic cracking

HCS = hybrid cracking

TOP PERFORMANCE:
ADAPTIVE INDEXING +
SIMULATED 
ANNEALING

… 2X FASTER 
THAN THE BEST!



Proprietary

BASELINES
• To better help our understanding of the final results, we see this chart for some help in 

understanding other methods.

(DC)
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BASELINES
• To better help our understanding of the final results, we see this chart for some help in 

understanding other methods.

(DC)
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RESPONSE TIME

Meta-adaptive indexing shows 
highly stable convergence!

DC = standard cracking

DD1R = stochastic cracking

HCS = hybrid cracking
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RESPONSE TIME

MAINTAINS FAST 
CONVERGANCE WITH 
DIFFICULT DATA

DC = standard cracking

DD1R = stochastic cracking

HCS = hybrid cracking
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CAVEATS

• Meta-adaptivity is still sensitive to certain workloads

• Very large workloads that don’t fit 

• Also, what if the data being queried is antagonistic to the algorithm?
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IDEAS FOR IMPROVEMENT
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IDEAS FOR IMPROVEMENT

Adding Statistics for:

• Modes: Calculating top-n modes for skew detection

• Variance: Incoming queries can be indexed for range variance to make indexing more 

Formula for varianceFormula for z-score
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THANK YOU!


