
GENERALIZED SKIPPING-ORIENTED PARTITIONING
PRESENTED BY KAIJIE CHEN

OUTLINE

¡ Introduction

¡ Background: The SOP Framework

¡ Generalized SOP

¡ Column Grouping

¡ Local Feature Selection

¡ Query Processing

¡ Experiments

DATA
WAREHOUSE

¡ Focus more on OLAP workloads

¡ Infrequent, offline and batched data insertion

¡ Demanding in query efficiency

¡ Question: Which storage layout has a better support for OLAP
workloads?

SKIPPING-ORIENTED
PARTITIONING (SOP)

¡ Records are partitioned into
blocks by filters (predicates)

¡ Blocks are skipped when query
doesn’t satisfy the filter.

CHARACTERISTICS
OF REAL-WORLD
ANALYTICAL
QUERIES

¡ Filter Commonality: A small set of filters are commonly used by
many queries

¡ Filter Stability: Only a tiny fraction of query filters are newly
introduced over time

¡ Idea: Optimize for future queries based on old ones

SOP FRAMEWORK:
THREE STEPS

¡ Workload analysis

¡ Augmentation

¡ Partitioning

SOP STEP 1:
WORKLOAD ANALYSIS

¡ This step extracts as features a set of representative filter
predicates in the workload by using frequent itemset mining

¡ A feature can be a single filter predicate or multiple conjunctive
predicates, which possibly span multiple columns. A predicate
can be an equality or range condition, a string matching operation
or a general boolean user-defined function (UDF).

¡ Frequent Dataset Mining: an essential task within data analysis
for extracting frequently occurring events, patterns, or items in
data.

¡ Workloads can be history query logs

SUBSUMPTION
RELATION

¡ A feature subsumes a query when the feature is a more
relaxed condition than the query predicates.

¡ That is to say, if feature P subsumes query Q , then Q ⇒ P

¡ For example, B > 0 subsumes B > -1

¡ SOP takes into subsumption relations when extracting
features

SOP STEP2:
AUGMENTATION

¡ Data scanning

¡ Batch evaluates features and
stores the evaluation results as
an augmented feature vector

¡ Feature Vector: a m-
dimensional bit vector, the i-th
bit of which indicates whether
this tuple satisfies the i-th
feature or not

SOP STEP3:
PARTITIONING

¡ Group the (vector, tuple)- pairs
into (vector, count)-pairs

¡ A clustering algorithm is
performed on the (vector,
count)-pairs, which generates
a partition map.

¡ Annotate each block with a
union vector, which is a
bitwise OR of all the feature
vectors in the block

CLUSTERING
ALGORITHM

¡ A research by the same authors: Fine-grained Partitioning
for Aggressive Data Skipping

¡ Partition data into fine-grained, balance-sized blocks

SOP FRAMEWORK:
THREE STEPS

¡ Workload analysis

¡ Augmentation

¡ Partitioning

PROBLEMS FOR
SOP

CAN YOU LIST
SOME OF THE
PROBLEMS FOR
SOP?

PROBLEMS FOR
SOP

¡ Can only partition the data based on one field

¡ Based on atomic-tuple constraint, not fully utilize the
features of column-based layouts.

PARTITIONING ON
COLUMNAR
LAYOUTS

¡ Good parts: Able to partition on each column
independently, which increases data skipping efficiency

¡ Problem: As each column is reorganized, you need to
associate a tuple id for each data cell, and use the tuple
ids to reconstruct the tuple, which incurs tuple-
reconstruction overhead

¡ How can we utilize the good parts and mitigate the
problem?

A SOLUTION: COLUMN GROUPING

GENERALIZED
SOP (GSOP)

¡ Generalizes SOP by removing the atomic-tuple constraint and allowing
both horizontal and vertical partitionings.

¡ Use column grouping to achieve better data skipping efficiency while
mitigate the tuple-reconstruction overhead

¡ Each group has its associate features, named local features

GSOP FRAMEWORK

¡ Workload Analysis

¡ Augmentation

¡ Column Grouping

¡ Local Feature Selection

¡ Partitioning

GSOP: WORKLOAD
ANALYSIS AND
AUGMENTATION

¡ Workload Analysis: The
same as Workload Analysis
in SOP Framework. The
features extracted are called
global features in GSOP

¡ Augmentation: The same as
Augmentation in SOP
Framework. Each tuple is
augmented with a global
feature vector

GSOP: COLUMN GROUPING AND LOCAL FEATURE SELECTION

¡ Column Grouping: Divide the columns into
column groups based on an objective function
that incorporates the trade-off between
skipping effectiveness and tuple-
reconstruction overhead

¡ Local Feature Selection: For each column
group, we select a subset of global features as
local features. These local features will be
used to guide the partitioning of each column
group.

¡ Column Grouping process calls Local Feature
Selection repeatedly.

GSOP:
PARTITIONING

¡ Similar to Partitioning in SOP

¡ To partition each column group, we need local feature vectors that
correspond to the local features. Since a set of local features is a subset
of global features (computed in Step 2), for each column group, we can
project the global feature vectors to keep only the bits that correspond to
the local features (using a bit mask)

COLUMN
GROUPING

¡ Target: Incorporate the opportunities of skipping horizontal blocks
within each column group

¡ Use Object Function to decide whether to group or not

OBJECTIVE FUNCTION

¡ Summing up Skipping Effectiveness and Tuple-Reconstruction Overhead

¡ Some variables:

SKIPPING EFFECTIVENESS

¡ Data cell: each column value of a tuple

¡ Assume scanning a data cell incurs a uniform cost 1

¡ For every column group , query q needs to scan columns

¡ Let denote the number of rows that query q needs to scan in group Gi

¡ The overall scan cost:

TUPLE RECONSTRUCTION OVERHEAD

¡ When a query read from a single column group, no tuple-reconstruction is needed.

¡ When tuple-reconstruction is needed, data cells filtered in different column groups are sorted by tuple id and merge
together on tuple id

¡ The total cost will be

OBJECTIVE FUNCTION

¡ Objective function for a single query q:

¡ Objective function for a whole workload W:

EVALUATION OF

Accurate evaluation: perform partitioning on the column group Gi

a) Extract local features for Gi

b) Project the global feature vectors onto local feature vectors

c) Apply partitioning to Gi based on the local feature vectors

EVALUATION OF

¡ Bad parts for accurate evaluation: part c) is quite expensive, using cluster algorithm

¡ Replace c) with an upper-bound estimation:

SEARCH STRATEGY

¡ Brute force search is too expensive.

¡ Use a heuristic algorithm instead.

¡ Initially, each column itself forms a group.

¡ We then iteratively choose two groups to merge until all columns are in one group.

¡ At each iteration, we enumerate all pairs of column groups and evaluate how their merge would affect the objective
function.

¡ We then pick the merge that leads to the minimum value of the objective function.

¡ Starting from c columns, we need c iterations to merge all columns into one group.

¡ After these c iterations, we pick the iteration where the objective function has the minimum value and return the grouping
scheme from that iteration.

¡ It’s a heuristic method, not always generate the most optimized grouping

LOCAL FEATURE SELECTION: CANDIDATE LOCAL FEATURES

¡ Select candidate local features for column group Gi: based on whether the global feature has a column within the
column group or whether a column in Gi often co-exist with the global feature

LOCAL FEATURE SELECTION: FEATURE WEIGHTING AND SELECTION

¡ Too expensive to make all the candidates local features

¡ Select the local feature based on frequency in the group, using a weight function

¡ Regards the number of local features, some possible approaches discussed in paper

QUERY PROCESSING

QUERY PROCESSING: READING QUERY BLOCKS

When a query arrives

1) Check query against global features, see which global features subsumes the query, and generate the query vector

Question: What query vector is to be generated?

QUERY PROCESSING: READING DATA BLOCKS (CONT’D)

2) Extract the columns that this query needs to read and pass it to the column grouping catalog

QUERY PROCESSING: READING DATA BLOCKS (CONT’D)

3) Go to the actual data block, using mask vectors for the block to filter the local features of the block inside the query
vector

QUERY PROCESSING: READING DATA BLOCKS (CONT’D)

4) Query inside each block, using the masked query vector to skip partitions by compute a bitwise OR with the union
vector

QUERY PROCESSING:
TUPLE
RECONSTRUCTION

After reading data from each block and the tuple-id, sort merge them
to reconstruct tuples in memory.

EXPERIMENTS

¡ Environments: Spark, use Parquet as storage file format

¡ Benchmark Workloads: Big Data Benchmark, TPC-H, SDSS

APACHE SPARK

¡ A unified analytics engine for big data processing, with built-in
modules for streaming, SQL, machine learning and graph processing

¡ Is used by researchers to implement GSOP

APACHE PARQUET

¡ A column-based data storage format

¡ Used by the researchers to store partition files

RESULTS FOR BIG DATA BENCHMARK

RESULTS FOR TPC-H

RESULTS FOR TPC-H (CONT’D)

RESULTS FOR SDSS

