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DATA 
WAREHOUSE

¡ Focus more on OLAP workloads

¡ Infrequent, offline and batched data insertion

¡ Demanding in query efficiency

¡ Question: Which storage layout has a better support for OLAP 
workloads?



SKIPPING-ORIENTED 
PARTITIONING (SOP)

¡ Records are partitioned into 
blocks by filters (predicates)

¡ Blocks are skipped when query 
doesn’t satisfy the filter. 



CHARACTERISTICS 
OF REAL-WORLD 
ANALYTICAL 
QUERIES

¡ Filter Commonality: A small set of filters are commonly used by 
many queries

¡ Filter Stability: Only a tiny fraction of query filters are newly 
introduced over time

¡ Idea: Optimize for future queries based on old ones



SOP FRAMEWORK: 
THREE STEPS

¡ Workload analysis

¡ Augmentation

¡ Partitioning



SOP STEP 1:
WORKLOAD ANALYSIS

¡ This step extracts as features a set of representative filter 
predicates in the workload by using frequent itemset mining

¡ A feature can be a single filter predicate or multiple conjunctive 
predicates, which possibly span multiple columns. A predicate 
can be an equality or range condition, a string matching operation 
or a general boolean user-defined function (UDF).

¡ Frequent Dataset Mining: an essential task within data analysis 
for extracting frequently occurring events, patterns, or items in 
data.

¡ Workloads can be history query logs 



SUBSUMPTION 
RELATION

¡ A feature subsumes a query when the feature is a more 
relaxed condition than the query predicates.

¡ That is to say, if feature P subsumes query Q , then Q ⇒ P

¡ For example, B > 0  subsumes B > -1

¡ SOP takes into subsumption relations when extracting 
features



SOP STEP2: 
AUGMENTATION

¡ Data scanning

¡ Batch evaluates features and 
stores the evaluation results as 
an augmented feature vector

¡ Feature Vector: a m-
dimensional bit vector, the i-th
bit of which indicates whether 
this tuple satisfies the i-th
feature or not



SOP STEP3: 
PARTITIONING

¡ Group the (vector, tuple)- pairs 
into (vector, count)-pairs

¡ A clustering algorithm is 
performed on the (vector, 
count)-pairs, which generates 
a partition map.

¡ Annotate each block with a 
union vector, which is a 
bitwise OR of all the feature 
vectors in the block



CLUSTERING 
ALGORITHM

¡ A research by the same authors: Fine-grained Partitioning 
for Aggressive Data Skipping

¡ Partition data into fine-grained, balance-sized blocks



SOP FRAMEWORK: 
THREE STEPS

¡ Workload analysis

¡ Augmentation

¡ Partitioning



PROBLEMS FOR 
SOP

CAN YOU LIST 
SOME OF THE 
PROBLEMS FOR 
SOP?



PROBLEMS FOR 
SOP

¡ Can only partition the data based on one field

¡ Based on atomic-tuple constraint, not fully utilize the 
features of column-based layouts.



PARTITIONING ON 
COLUMNAR 
LAYOUTS

¡ Good parts: Able to partition on each column 
independently, which increases data skipping efficiency

¡ Problem: As each column is reorganized, you need to 
associate a tuple id for each data cell, and use the tuple 
ids to reconstruct the tuple, which incurs tuple-
reconstruction overhead

¡ How can we utilize the good parts and mitigate the 
problem?



A SOLUTION: COLUMN GROUPING



GENERALIZED 
SOP (GSOP)

¡ Generalizes SOP by removing the atomic-tuple constraint and allowing 
both horizontal and vertical partitionings.

¡ Use column grouping to achieve better data skipping efficiency while 
mitigate the tuple-reconstruction overhead

¡ Each group has its associate features, named local features



GSOP FRAMEWORK

¡ Workload Analysis

¡ Augmentation

¡ Column Grouping

¡ Local Feature Selection

¡ Partitioning



GSOP: WORKLOAD 
ANALYSIS AND 
AUGMENTATION

¡ Workload Analysis: The 
same as Workload Analysis 
in SOP Framework. The 
features extracted are called 
global features in GSOP

¡ Augmentation: The same as 
Augmentation in SOP 
Framework. Each tuple is 
augmented with a global 
feature vector



GSOP: COLUMN GROUPING AND LOCAL FEATURE SELECTION

¡ Column Grouping: Divide the columns into 
column groups based on an objective function 
that incorporates the trade-off between 
skipping effectiveness and tuple-
reconstruction overhead

¡ Local Feature Selection: For each column 
group, we select a subset of global features as 
local features. These local features will be 
used to guide the partitioning of each column 
group.

¡ Column Grouping process calls Local Feature 
Selection repeatedly.



GSOP: 
PARTITIONING

¡ Similar to Partitioning in SOP

¡ To partition each column group, we need local feature vectors that 
correspond to the local features. Since a set of local features is a subset 
of global features (computed in Step 2), for each column group, we can 
project the global feature vectors to keep only the bits that correspond to 
the local features (using a bit mask)



COLUMN 
GROUPING

¡ Target: Incorporate the opportunities of skipping horizontal blocks 
within each column group

¡ Use Object Function to decide whether to group or not



OBJECTIVE FUNCTION

¡ Summing up Skipping Effectiveness and Tuple-Reconstruction Overhead

¡ Some variables:



SKIPPING EFFECTIVENESS

¡ Data cell: each column value of a tuple

¡ Assume scanning a data cell incurs a uniform cost 1

¡ For every column group                    , query q needs to scan                  columns

¡ Let        denote the number of rows that query q needs to scan in group Gi

¡ The overall scan cost:



TUPLE RECONSTRUCTION OVERHEAD

¡ When a query read from a single column group, no tuple-reconstruction is needed.

¡ When tuple-reconstruction is needed, data cells filtered in different column groups are sorted by tuple id and merge 
together on tuple id

¡ The total cost will be



OBJECTIVE FUNCTION

¡ Objective function for a single query q:

¡ Objective function for a whole workload W:



EVALUATION OF 

Accurate evaluation: perform partitioning on the column group Gi

a) Extract local features for Gi

b) Project the global feature vectors onto local feature vectors

c) Apply partitioning to Gi based on the local feature vectors



EVALUATION OF 

¡ Bad parts for accurate evaluation: part c) is quite expensive, using cluster algorithm

¡ Replace c) with an upper-bound estimation:  



SEARCH STRATEGY

¡ Brute force search is too expensive.

¡ Use a heuristic algorithm instead.

¡ Initially, each column itself forms a group.

¡ We then iteratively choose two groups to merge until all columns are in one group.

¡ At each iteration, we enumerate all pairs of column groups and evaluate how their merge would affect the objective 
function.

¡ We then pick the merge that leads to the minimum value of the objective function.

¡ Starting from c columns, we need c iterations to merge all columns into one group.

¡ After these c iterations, we pick the iteration where the objective function has the minimum value and return the grouping 
scheme from that iteration.

¡ It’s a heuristic method, not always generate the most optimized grouping



LOCAL FEATURE SELECTION: CANDIDATE LOCAL FEATURES

¡ Select candidate local features for column group Gi: based on whether the global feature has a column within the 
column group or whether a column in Gi often co-exist with the global feature



LOCAL FEATURE SELECTION: FEATURE WEIGHTING AND SELECTION

¡ Too expensive to make all the candidates local features

¡ Select the local feature based on frequency in the group, using a weight function

¡ Regards the number of local features, some possible approaches discussed in paper



QUERY PROCESSING



QUERY PROCESSING: READING QUERY BLOCKS

When a query arrives

1) Check query against global features, see which global features subsumes the query, and generate the query vector

Question: What query vector is to be generated?



QUERY PROCESSING: READING DATA BLOCKS (CONT’D)

2) Extract the columns that this query needs to read and pass it to the column grouping catalog



QUERY PROCESSING: READING DATA BLOCKS (CONT’D)

3) Go to the actual data block, using mask vectors for the block to filter the local features of the block inside the query 
vector



QUERY PROCESSING: READING DATA BLOCKS (CONT’D)

4) Query inside each block, using the masked query vector to skip partitions by compute a bitwise OR with the union 
vector



QUERY PROCESSING: 
TUPLE 
RECONSTRUCTION

After reading data from each block and the tuple-id, sort merge them 
to reconstruct tuples in memory.  



EXPERIMENTS

¡ Environments: Spark, use Parquet as storage file format

¡ Benchmark Workloads: Big Data Benchmark, TPC-H, SDSS 



APACHE SPARK

¡ A unified analytics engine for big data processing, with built-in 
modules for streaming, SQL, machine learning and graph processing

¡ Is used by researchers to implement GSOP



APACHE PARQUET

¡ A column-based data storage format

¡ Used by the researchers to store partition files



RESULTS FOR BIG DATA BENCHMARK



RESULTS FOR TPC-H



RESULTS FOR TPC-H (CONT’D)



RESULTS FOR SDSS


