
class 9

Key-Value Stores for Concurrent and
Point Accesses

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

Key-Value Stores with In-Place Updates

FishStore: Faster Ingestion with Subset Hashing

Faster: A Concurrent Key-Value Store with In-Place Updates

Why do we discuss those papers?
Different requirements and workload than prior approaches

Up to now we focused on mixed workload
(inserts, point queries, range queries, updates, deletes)

Lethe
What was the design?

Log-Structured Merge Trees: to support range queries

What if we have no range queries?

What if we have intensive updates on existing keys?

What if we have a huge dataset but a small working set?

What if we want to support multiple threads updating at the same time?

What data structure to use?

A Hash index Threads can access concurrently

No need to spend time sorting

Quick access to any record

Threads Records

Where to store the records?

In-Memory

Append-only Log
(storage)

Hybrid Log
(mem+storage)

Concurrent Larger-than-
memory

In-place
updates

✅

✅

✅

✅

✅

✅

✅

which one to use? all 3!

How to avoid synchronization between threads?

Epochs

Instead of acquiring locks (which would cause performance problems)

Each thread operates in an epoch ei

When all threads are past a specific epoch, this is marked as safe
When an epoch becomes safe then specific actions are triggered

Operating in-memory

Reads: follow the pointer (may have to follow a chain of links)

Updates and Inserts: start by reading,
then either update atomically or insert

Deletes: atomically splice the record from the list

Spilling out of memory

Hash table now stores the logical address (relevant to the tail offset)

When a page is full, it is marked for flushing to storage

The page is flushed when the epoch (that marked it) becomes safe

how to handle updates?
insert + a pointer to the old entry
garbage collection needed

Efficient In-place updates in FASTER

Updating from Stable or Read-Only is a read-modify-write (to mutable)

Further updates are in-place

New inserts go to mutable

Handling multiple threads

Each thread might be in a different epoch
When all agree then it is ok, else, it is fuzzy

blind updates are ok
In Fuzzy

read-modify-write are deferred

Key-Value Design Depends on Workload!

From LSM to Hash-based logging …

the design depends on the use case!

Range Queries, Point Queries, Working Set Size, Update Intensity

What if we need to know the contents of the value?

In our discussions up to now we focus on the key!

Key Value what if we use the value?

what is the value?

how to use it?
CSV/JSON

We need to parse it!

JSON/CSV parsing

JSON example:
{

"employee": {
"name": "sonoo",
"salary": 56000,
"married": true

}
}

CSV example:
name, salary, married [optional header]
sonoo, 56000, true

Parsing is CPU expensive

But recent approaches can parse
2GB/s/core (selective parsing)!

perfect match for streaming
(e.g. telemetry, monitoring)

Faster & Efficient Parsing = FishStore

A new storage layer for flexible-schema data.

On-demand indexing over predicated subset functions (PSFs).
Group records with the same property in a logical view.
E.g., all records in a population survey whose age > 20.

Faster & Efficient Parsing = FishStore

Fast data ingestion with minimum effort parsing & indexing.

Efficient subset retrieval over registered properties.
Fast scan over constructed logical view.
Support hybrid scan over indexed and unindexed records.

Predicate Subset Functions

Logically groups records with the same property

Given a data source of records in 𝑅, a predicated subset function (PSF)
is a function 𝑓: 𝑅 → 𝐷 which maps valid records in 𝑅, based on a set of
fields of interest in 𝑅, to a specific value in domain 𝐷.

𝑅 is the data record collection
𝐷 can be a binary value (yes/no) or an arbitrary set of values

PSF Example (Telemetry)

FishStore Design

Technical Challenges

Fast concurrent index for PSFs

Hybrid Scan (index scan vs sequential scan)

Subset Hash Index

Record Layout

Subset Retrieval: Hybrid Scan

Subset Retrieval: Adaptive Prefetching

Use-cases

GitHub: GHArchive Sep 2018, 18M records, record size ~3KB

Twitter: 1% twitter samples for 3 days, 9.3M records, record size > 5KB.

Yelp: Yelp review open dataset, 48M records, record size < 1KB

Evaluation

Key question for FishStore
Do we need both fast index and fast parser?

FishStore: FASTER (fast index) + Mison (fast parser)
FishStore-RJ: FASTER (fast index) + RapidJSON (slow parser)
RDB-Mison++: RocksDB (slow index) + Mison (fast parser)
RDB-RJ: RocksDB (slow index) + RapidJSON (slow parser)

Ingestion Throughput (on SSD)

Saturate SSD Bandwidth with 8 cores!

Ingestion Throughput (in Memory)

Without SSD achieve 10GB/s of ingesting while parsing!

Ingestion: CPU Breakdown

Subset Retrieval

Parsing Overhead

Impact of the number of PSF

Conclusion

Data store design depends on requirements and workload!

FishStore
New storage layer for flexible-schema data.
Predicate Subset Function (PSF) group records logically.
Efficient subset hash index + on demand indexing.
Fast parser + fast index = minimum effort fast ingestion.
Hybrid scan with adaptive prefetching.

class 9

Key-Value Stores for Concurrent and
Point Accesses

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

https://bu-disc.github.io/CS561/

