Subhadeep Sarkar Subhadeep Sarkar Lethe [\\le-the\] n: the goddess of forgetfulness #### key-value pairs RID timestamp name department ··· location RID timestamp name department ··· location ### LSW-TIELL ### LSW-TEEL ### LSW-TEEL ### Even years later, Twitter doesn't delete your direct messages Small Datum Jan '20 Deletes are fast and slow in an LSM "LSM-based data stores perform suboptimally for workloads with deletes." # Now, let's talk about deletes! delete delete := insert tombstone delete := insert tombstone ## the problems ## the problems ### the problems poor read perf. write amplification space amplification ## delete persistence latency poor read perf. write amplification space amplification # the problems unbounded delete persistence latency ### the problems poor read perf. write amplification space amplification unbounded delete persistence latency latency spikes superfluous I/Os #### the solution latency spikes superfluous I/Os timely delete persistence within Dth #### FAst DElete #### FAst DElete #### the solution #### the solution delete all entries older than: D days #### delete all entries with timestamp <= 65_D | page 1 | | | | | | | | | | | | |-----------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--|--| | 1 | 4 | 9 | 14 | 15 | 19 | 20 | 24 | | | | | | 34 _D | 69 _D | 3 _D | 79 _D | 8 _D | 80 _D | 23 _D | 24 _D | | | | | | page 2 | | | | | | | | | | | | | 29 | 32 | 33 | 40 | 44 | 52 | 56 | 60 | | | | | | 88 _D | 90 _D | 28 _D | 74 _D | 9 _D | 76 _D | 81 _D | 64 _D | | | | | | | | | | | | | | | | | | | pag | e 3 | | | | | | | | | | | | pag | e 3 | 67 | 71 | 72 | 73 | 78 | 79 | | | | | | | | 67
1 _D | 71
67 _D | 72
77 _D | 73
89 _D | 78
65 _D | 79
12 _D | | | | | | 61 | 63
82 _D | | | | | | | | | | | | 61
75 _D | 63
82 _D | | | | | | | | | | | #### delete all entries with timestamp <= 65_D #### delete all entries with timestamp <= 65_D S_{min}=1:: S_{max}=99 $D_{min}=1_D::D_{max}=90_D$ #### delete all entries with timestamp <= 65_D #### delete all entries with timestamp <= 65_D partitioned on S #### delete all entries with timestamp <= 65_D partitioned on S #### delete all entries with timestamp <= 65_D #### delete all entries with timestamp <= 65_D | page 2 | | | | | | | | | | | | |-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--|--|--|--| | 4 | 40 | 52 | 14 | 19 | 56 | 29 | 32 | | | | | | 69 _D | 74 _D | 76 _D | 79 _D | 80 _D | 81 _D | 88 _D | 90 _D | | | | | #### delete all entries with timestamp <= 65_D partitioned on D page 2 4 40 52 14 19 56 29 32 69D 74D 76D 79D 80D 81D 88D 90D drop page #### delete all entries with timestamp <= 65_D drop page sorted on S SST file #### delete all entries with timestamp <= 65_D drop page sorted on S #### delete all entries with timestamp <= 65_D partitioned on S partitioned on D sorted on S Internals of an SST file in KiWi fraction of deleted entries (%) Internals of an SST file in KiWi fraction of deleted entries (%) #### the solution #### the solution # KiV # suboptimal state-of-the-art design for workloads with deletes FADE persists deletes timely using latency-driven compactions KiWi supports efficient secondary range deletes using key-interweaved data storage # suboptimal state of the art design for workloads with deletes FADE persists deletes timely using latency-driven compactions KiWi supports efficient secondary range deletes by key-interweaved data layout disc-projects.bu.edu/lethe/ Lethe strikes balance between cost, performance, and latency