
class 24

Learned (Approximate) Query Processing

Prof. Manos Athanassoulis

https://bu-disc.github.io/CS561/

CS 561: Data Systems Architectures

with slides from Marco Serafini and Peter Triantafillou

https://bu-disc.github.io/CS561/

Project Submission

April 25th, 11:59pm: submit draft project report & code

April 27th and 29th: 3 + 3 20-minute presentations (17+3 for questions)

May 3rd, 11:59pm (hard deadline): send final report & updated code

Project Presentations

April 27th

12:30-12:45 Class Evaluation
12:45-1:05 (A) Deal B+-Trees to Support Sortedness by Sean Brady
1:05-1:25 (B) LSM Implementation by Chenming Shi
1:25-1:45 (C) Learned LSM-Trees by Jason Banks

April 29th

12:30-12:50 (D) Query-Driven LSM Compaction by Manish Patel, Chen-Wei Weng, and Al Dahler
12:50-1:10 (E) Bufferpool Implementation by Kaijie Chen
1:10-1:30 (F) Bufferpool Implementation by Haochuan Xiong
1:30-1:45 Closing Remarks

20 minutes (17+3 for questions)

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Tuner

application/SQL
access patterns
complex queries

Query
Parser

Query
Compiler Optimizer

Evaluation
Engine

Memory/Storage
Management

Indexing Transaction
Management

modules

Use ML models to estimate the actual
data and replace the Query Evaluation

Motivation

Agarwal, Sameer, et al. "BlinkDB: queries with bounded errors and bounded response times on very large data." Proceedings
of the 8th ACM European Conference on Computer Systems. ACM, 2013.

In the era of big data, exact analytical query processing is too
“expensive”.

Motivation

In the era of big data, exact analytical query processing is too
“expensive”.
A large class of analytical queries takes the form:

SELECT AF(y) FROM table
WHERE x BETWEEN lb AND ub
[GROUP BY z]

Such queries are very popular on emerging datasets/workloads: IoT,
sensors, scientific, etc.

Approximate Query Processing

Targeting Analytical Queries – why?

Goal: fast data analytics over large volumes of data
Tradeoff: accuracy vs. latency – why?

Is accurate response always necessary?
exploratory analytics, business intelligence, analytics for ML

Basic tool: sampling

Current Solutions

• Online Aggregations
• Data Sketches
• Sample-based Approaches (the dominating approach)

Uniform Sampling

Stratified Sampling

Hash Sampling

Limited supported aggregate functions

Still, very time-consuming

Space Overhead – samples can be very large

Support for join (multi-way)

Support for nesting

Query-time sampling

Queries explicitly specify sample operations
Sample then execute query

Uniform sampling: may miss small groups
Distinct sampler: online sampling of distinct values

With joins: want to sample before joins not after – why?

Online aggregation

Execute query on growing random samples
Preliminary outputs are constantly updated – which?

Query result
Estimated error

Hard to execute efficiently
Random sample à Random access
Random samples might contain few rows that join
Can be improved using join indices

Queries on Pre-Computed Samples

Low latency because sampling cost is assumed offline
operate only on the sample

Additional space (to keep sample)
Cannot provide fixed error bounds

Error bounds are data dependent (high variance = large error)
They can be arbitrarily large

SQL additions

Aggregate is computed on a group
Group is defined based on certain columns
Extend specification with bounds

Error-bound query

SELECT count(*)
FROM Sessions
WHERE Genre=`western`
GROUP BY OS
ERROR WITHIN 10% AT CONFIDENCE 95%

Time-bound query

SELECT count(*)
FROM Sessions
WHERE Genre=`western`
GROUP BY OS
WITHIN 5 SECONDS

Offline vs online sampling

Offline Online

Assumption: (partially) known workload No assumption

Speedup: High Low

Both are helpful:
• offline sampling is used for (partially) predictable workloads,
• online sampling is for the rest.

DBEst: transparent AQP

Very small query execution times (e.g., ms),
With small states (memory/storage footprint) (e.g., KBs), and
High accuracy (e.g., a few % relative error)
Regardless of size of underlying datasets?

YES! (for a large class of analytical queries)
rests on simple SML models
Built over samples of tables

DBEst Contributions

DBEst shows that
Models can be built over small samples
Can generalize nicely, ensuring accuracy
Model state is small (KBs)
AQP over models is much faster than over samples
Model training overhead is acceptable – inline with sample generation.

DBEst Architecture

DBEst and ML models

• Problem SQL query
SELECT AF(y) from table
WHERE x between low and high
[GROUP BY z]

• What models?

• LR, PR...
• XGBoost, GBoost...Regression y=R(x)

• Kernel Density
• Nearest neighbor method
• Orthogonal series estimator

Density Estimator
D(x)

How?

More support on SQL

• Multivariate selection

• Supporting GROUP BY
• build models for each group by value,
• create model bundles:

• E.g., each bundle stores ~500 groups
• Store bundles in, say, an SSD (~100 ms to deserialize and compute AF on bundle).

• Supporting join
• Join table is flattened -> make samples -> build models.

Evaluation

• systematically showing sensitivities on
• range predicate selectivity + sample sizes + AFs

• Performance under Group By and Joins
• Comparisons against
• State of the art AQP (VerdictDB and BlinkDB)
• State of the art columnar DB (MonetDB)

• Using data from TPC-DS and 3 different UCI-ML repo datasets.

Experimental Setup

• Ubuntu 18.04 with Xenon X5650 12-core CPU, 64 GB RAM And 4TB SSD
• Datasets: TPC-DS, Combined Cycle Power Plant (CCPP), Beijing PM2.5
• Query types:

• Synthetic queries: 0.1%, 1%, to 10% query range
• Number of queries: vary between 30 to1000 queries.
• Complex TPC-DS queries: Query 5, 7, and 77.

• Compared against VerdictDB, BlinkDB and MonetDB, for error
• VerdictDB uses 12 cores while DBEst runs on 1 core. (Multi-threaded DBEst

is also evaluated)
• Report execution times + system throughput for the parallel version
• Report performance of joins and group by

Performance – Sensitivity Analysis
Query range effect

Influence of query range on relative error

Dataset: TPC-DS
Sample size: 100k
540 synthetic queries
Column pair:
[ss_list_price, ss_wholesale_cost]

Performance – Sensitivity Analysis
Sample size effect

Influence of sample size on relative error Influence of sample size on space overhead

Dataset: TPC-DS
Query range: 1%
1200 synthetic queries
Column pair:
[ss_list_price, ss_wholesale_cost]

Performance Comparison
TPC-DS dataset

Relative Error: DBEst vs VerdictDB Query Response Time: DBEst vs VerdictDB

Query range: 0.1%, 1%, 10%
~100 queries, involving 16
column pairs.
Sample size: 10k, 100k

Performance Comparison
CCPP dataset

Relative error (10k sample) Relative error (100k sample)

2.6 billion records, 1.4TB
Query range: 0.1%, 0.5%, 1.0%
108 queries, involving 3 column
pairs.
Sample size: 10k, 100k

Performance Comparison
Group By

Accuracy histogram for SUMRelative error for group by queries

SELECT AF(ss_list_price)
FROM store_sales
WHERE ss_wholesale_cost_sk …
GROUP BY ss_store_sk

• 90 queries, 57 groups
• Sample size: 10k

Performance Comparison Join

Join accuracy comparison for the TPC-DS dataset Query response time (s) for the TPC-DS dataset

SELECT AF(ss_wholesale_cost), AF(ss_net_profit)
FROM store_sales, store
WHERE ss_store_sk=s_store_sk
AND s_number_of_employees BETWEEN …

• 42 queries.

Parallel Query Execution

Group by query response time reduction (TPC-DS) Throughput of parallel execution (CCPP)

1 core versus 12 cores

Limitations

• Group By Support ->too many groups
• Model Training time ↑, Query Response time ↑, space overhead ↑.

• No error guarantee

Contribution & Conclusion

• Presented DBEst: a model-based AQP engine, using simple SML models:
• Much smaller query response times
• High(er) accuracy
• Much smaller space-time overheads
• Scalability

• Ensuring high accuracy, efficiency, scalability with low money investments -
- resource (cpu, memory/storage/ network) usage.
• Future work: more efficient support for

• Joins
• Categorical attributes
• Improved parallel/distributed DBEst

