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Why an I/O Model?
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~5ns

~100ns

~1 ms

larger faster
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Traditional I/O 
Model
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Traditional I/O Model (EM Model)

Small, fast main memory
(size M) Large, slow external memory

One I/O at a time
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Traditional I/O Model (EM Model)

Small, fast main memory
(size M) Large, slow external memory

0 access cost

Transfer 
cost 1 unit

So, Total cost @ total number of 
read/write to disk
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Traditional I/O Model (EM Model)

Small, fast main memory
(size M) Large, slow external memory

Two assumptions

o Symmetric cost for Read & Write to disk

o One I/O at a time
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Hard Disk Drives
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Hard Disk Drives

Two assumptions of EM Model
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Symmetric cost for Read 
& Write to disk One I/O at a time



HDD Stopped Evolving

o Generally, the slowest component

o Slowest increase in performance

Device Size Seq B/W Time to read

HDD 1980 100 MB 1.2 MB/s ~ 1 min

HDD 2020 4 TB 125 MB/s ~ 9 hours

HDDs are moving deeper in the memory hierarchy, and new 
algorithms are designed for new faster storage devices

How do these modern storage devices perform? 13
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Solid-State Drives 
& 

Non-Volatile Memories

No Mechanical Movement!
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Solid State Drives & NVMs

SSDs

• SATA SSDs

• PCIe SSDs (NVMe SSDs)

• Zoned SSDs 

• Open SSDs
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NVMs

• PCM

• MRAM

• STT-RAM

• 3D Xpoint (Intel’s Optane)



Modern Storage Devices

Symmetric cost for Read & Write

One I/O at a time

Read/Write Asymmetry

Concurrency



Read/Write Asymmetry
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• Both reads & writes are fast in empty drive

• Out-of-place updates cause invalidation

• Invalidation causes garbage collection due to erase-before-write

• Limited device lifetime

Block 0 Block 1

Plane

Page 0

Page 1

Page 2

Page 0

Page 1

Page 2

Solid-State Storage Devices
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Reasons behind read/write asymmetry

• erase-before-write

• large erasure granularity

• garbage collection

Solid-State Storage Devices
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Writes 

come
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Block 1

Solid-State Storage Devices
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Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Writing in a free page isn’t costly!

Solid-State Storage Devices
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Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

A B C

D E F

G H Free

Free Free Free

Block 1

Update

A, B, C, D

Solid-State Storage Devices
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Block 0

Free Free Free

Free Free Free

Free Free Free

Free Free Free

E F

G H A’
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Block 1

Not all updates are costly!

Update

A, B, C, D

A B C

D

Solid-State Storage Devices
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…

What if there is no space?

Garbage Collection!
Block 0

E F
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B’ C’ D’
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Block N

M N O

P Q R

Solid-State Storage Devices
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What if there is no space?

Garbage Collection!
Block 0

Q’ R’ Free

Free Free Free

Free Free Free

Free Free Free

E F G

H A’ B’

C’ D’ M’

N’ O’ P’

Block N…

On average updates have higher cost (due to GC) à Read/Write asymmetry

Solid-State Storage Devices
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Intel Device Advertised Random 
Read IOPS

Advertised Random 
Write IOPS

Advertised 
Asymmetry

D5-P4320 427k 36k 11.9

DC-P4500 626k 51k 12.3

DC-P4610 643k 199k 3.2

Optane 900P 550k 500k 1.1

Optane H10 330k 250k 1.3

Read/Write Asymmetry - Example
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Asymmetry-Aware Algorithms

Read/Write Asymmetry
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Concurrency
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Internals of an SSD
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Controller
Chip 1 Chip 2 Chip N

Chip 1 Chip 2 Chip N

…
…

…

Channel 1…

Channel N

…Die N
Plane1 PlaneN

Block 1

Block N

…

…Die 1
PlaneN

Page 1

Page N
…

Plane1

Parallelism at different levels (e.g. channel, chip, die, plane block, page)
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How can Best Performance be 
Achieved?
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Controller
Chip 1 Chip 2 Chip N

Chip 1 Chip 2 Chip N

…
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Benchmarking
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Benchmarking
Tools

• Custom micro-benchmarking infrastructure

• fio

• Intel’s SPDK

34

Setup
• With File System

• Without File System



Measuring Asymmetry/Concurrency (With FS)

0

100

200

300

400

500

600

0 50 100 150 200 250 300

IO
PS

# Threads

4K Random Read 8K Random Read×103Device: Dell P4510 (1TB)



Measuring Asymmetry/Concurrency (With FS)

For 4K random read,

Asymmetry: 2.8

Concurrency: 70
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Measuring Asymmetry/Concurrency (With FS)

For 8K random write,

Asymmetry: 1.8

Concurrency: 10
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Measuring Asymmetry/Concurrency (With FS)

Asymmetry and 

concurrency depends 

on request type and 

access granularity
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Measuring Asymmetry/Concurrency (Without FS)

For 4K random reads,

Asymmetry: 3

Concurrency: 14
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Measuring Asymmetry/Concurrency (Without FS)

40
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More stable 

performance 

without the 

file system!
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Measuring Asymmetry/Concurrency
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Why does Performance Change 
Depending on the File System?



Can the File System be the Bottleneck?
Interrupt-based model

Request is 
submitted to OS

Driver processes 

the request

Data is read from 

h/w to buffer

Interrupt is 

generated
CPU is notified

Data is read 
from the buffer

43



Can the File System be the Bottleneck?
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Modern Storage Devices
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Modern Storage Devices

Most devices have 
high asymmetry
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Impact of Asymmetry/Concurrency
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How should the I/O model be adapted in light of 

read/write asymmetry and concurrency?
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Parametric I/O Model

PIO (M, k, a)

Main Memory 
Size

Concurrency Asymmetry

50



Buffer Pool Page Eviction Algorithm

Classical
Request(page);
If (page in BP) -> return page
Else

// Miss! Bring the page from Disk
If BP not full -> Read requested page from Disk
Else

- Select a page for eviction based on replacement policy
- If the candidate page is dirty, write to disk
- Drop the candidate page from BP
- Read requested page

[if the request is a write, an in-memory update takes place that
set the dirty bit as well] 51



Popular Page Replacement Algorithms

LRU (Most Popular)

LFU, FIFO (Simple)

Clock (Commercial)

CFLRU

LRU-WSR

52

Flash-Friendly



Disk page

DB
Buffer Pool

All these policies exchange one read for one write!

Dirty page

Traditional Buffer Pool Manager

Is this Fair?



• Since device has read/write asymmetry, it is NOT fair to perform

one write for one read

• Since writes are now a times costlier, for x writes and y reads, the

total weighted I/O cost = y + a x

54

NO!



Why an I/O model?

Why not the traditional I/O model?
Asymmetry & Concurrency of Modern Storage Devices

The parametric I/O model

A [much better] bufferpool policy

Experimental Evaluation

Future work & Conclusions

Overview

55



New Buffer Pool Page Eviction Algorithm

Use device’s properties
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New Buffer Pool Page Eviction Algorithms

Instead of evicting one dirty 

page, evict a pages at one go

Instead of evicting a pages, evict one page 

and write back a dirty pages at one go

57

1 read ⇒ (max) a evictions 1 read ⇒ (max) a write backs



New Buffer Pool Page Eviction Algorithm(s)
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COW(n)

Concurrent Write-back dirty pages from the eviction window of size n

COW-X(n)
Concurrent Write-back eXactly n dirty pages

COW (Concurrent Write-back)

n depends on the device concurrency



New Buffer Pool Page Eviction Algorithm(s)

59

COW(n, E)

Concurrent Eviction of dirty pages from the eviction window of size n

COW-X(n, E)
Concurrent Eviction of eXactly n dirty pages

COW (Concurrent Write-back)



6 2 3 5 7B

Let’s assume: a = 3 & red indicates dirty page

Read request of page 8 comes 

Let’s Take a Look at an Example

oldestnewest



6 2 3 5 7B

Let’s Take a Look at an Example
Candidate for eviction

8 6 2 3 5B

COW kicks in only when 
evicting a dirty page

After Eviction:

Write request of page 1 comes 



8 6 2 3 5B

Let’s Take a Look at an Example (n = 3)

LRU

1 8 6 2 3B

After Eviction:

Candidate

8 6 2 3 5

Eviction Window

COW(n)



8 6 2 3 5B

Let’s Take a Look at an Example (n = 3)

LRU

1 8 6 2 3B

After Eviction:

Candidate

COW(n)

8 6 2 3 5

Eviction Window

1 8 6 2 3

5 & 2 are concurrently written

8 6 2 3 5

COW-X(n)

Searches for n dirty pages



8 6 2 3 5B

Let’s Take a Look at an Example (n = 3)

LRU

1 8 6 2 3B

After Eviction:

Candidate

8 6 2 3 5

Eviction Window

1 8 6 2 3

5 & 2 are concurrently written

8 6 2 3 5

COW-X(n)

1 8 6 2 3

5, 2 & 6 are concurrently written

Searches for n dirty pages

COW(n)



8 6 2 3 5

Eviction Window

1 8 6 2 3

5 & 2 are concurrently written

8 6 2 3 5

COW-X(n)

1 8 6 2 3

5, 2 & 6 are concurrently written

Searches for n dirty pages

COW(n)What’s the 
tradeoff?
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Experimental Evaluation

67

• Comparison w.r.t. LRU, CFLRU, LRU-WSR and their COW counterparts

• Evaluation on 4 synthesized traces and TPC-C benchmark

• 3 storage devices: PCIe SSD, Regular SSD, Virtual SSD



Experimental Evaluation
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Experimental Evaluation

69

 0

 100

 200

 300

 400

 500

LRU CFLRU LRU-WSR

La
te

nc
y 

(s)

SOA COW(n) COW-X(n)
40.2%

29.4%

44.5%

Write-intensive Skewed Trace

Gain is more for write-intensive 

workloads because of efficient writing

Device: PCIe SSD

⍺ = 3



Experimental Evaluation
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Experimental Evaluation
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Experimental Evaluation
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Experimental Evaluation
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Impact of Read/Write in Workload
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For write heavy workloads, gain 

of COW can be as high as 2x

0.9

1.1

1.3

1.5

1.7

1.9

0 1 2 3 4 5 6 7 8 9 10 11

Sp
ee

du
p

Read/Write Ratio

LRU CFLRU LRU-WSR

0:100  10:90  20:80 30:70  40:60  50:50  60:40 70:30  80:20  90:10  100:0



Impact of Memory Pressure
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In general, COW has better gain 

for smaller bufferpool size
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Impact of Concurrency
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Impact of Asymmetry
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Experimental Evaluation (TPC-C)



Experimental Evaluation (TPC-C)
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Trace was collected from PostgreSQL database

TPC-C consists of 5 transactions

NewOrder (45%) R/W Mix

Payment (43%) R/W Mix

OrderStatus (4%) R-only

StockLevel (4%) R-only

Delivery (4%) W-heavy



Experimental Evaluation (TPC-C)
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Know Thy Device

Exploit Device Concurrency

Use Concurrency with Care

Asymmetry Controls Performance

Guidelines for Algorithm Design
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Future Work
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Make asymmetry and concurrency part of algorithm design 

… not simply an engineering optimization 

Build algorithms/data structures for storage devices with 
asymmetry a and concurrency k



Conclusion

Read/Write 
Asymmetry Concurrency

Need for a new 
parametric I/O model

PIO (M, k, a)

Modern Storage Devices

Benefits of PIO (M, k, a)
• algorithms tailored to new devices

• Can capture any new device

Prerequisite: quantify k and α



Thank You!!!
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Questions?
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Traditional Graph Traversal (DFS)

A

B C

D E F G

A

Stack
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Traditional Graph Traversal (DFS)
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Traditional Graph Traversal (DFS)

A

B C

D E F G
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Traditional Graph Traversal (DFS)

A

B C

D E F GStack

E
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C

And so on…
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Graph Traversal (DFS) with Concurrency

A

B C

D E F G

A
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Graph Traversal (DFS) with Concurrency

A
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D E F G
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C
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Graph Traversal (DFS) with Concurrency
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B C

D E F G
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G
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