

CAS CS 561: Data Systems Architectures
Data-intensive Systems and Computing Lab
Department of Computer Science
College of Arts and Sciences, Boston University
http://bu-disc.github.io/CS561/

CS561 Spring 2021 - Research Project

Title: Benchmarking Dual B+-trees for Near-Sorted Workloads

Background: B+-tree is an index data structure that stores data pointers only in leaf
nodes, and only pivot pointers in the internal nodes. Additionally, the leaf nodes are
also linked to provide ordered access to the records.

Problem: A general purpose of an index is to bring “order” to the data, for easier
access. Hence, for an already ordered/nearly-ordered workload, an index is expected
to perform the least amount of work required. B+-trees however, do not specially
leverage existing “orderness” in the data, and perform the same insert procedure as
in a general case. To increase the speed of inserts, we explore the idea of maintaining
two B+-trees – while inserting an element, if it is in-order with respect to the tree,
will be inserted in the first tree, else will be inserted into the second tree. There are a
few obvious drawbacks of course, for example, a query will have to now scan two
indexes rather than one, so will be more expensive.

Objective: The objective of the project is to benchmark the dual-index data structure
against differently sorted workloads. The workflow for this is as the following.

(a) Implement a simple dual-tree data structure – One tree inserts elements if in order,

and the other inserts out-of-order elements.
(b) A simple in-memory version of the B+-tree will be given to you. Improvements to

the B+-tree are encouraged. It is required to identify the modifications or additions
required to support the dual-tree system (for example, a way to recognize elements
if sorted or not).

(c) Benchmark the performance for inserts and point queries, differently sorted
workloads from the generator provided in Project0.

For more details, contact Aneesh Raman during the office hours or by email.

[1] S. Ben-Moshe, Y. Kanza, E. Fischer, A. Matsliah, M. Fischer, and C. Staelin.
Detecting and Exploiting Near-Sortedness for Efficient Relational Query
Evaluation. In Proceedings of the International Conference on Database
Theory (ICDT), pages 256–267, 2011

