CS460: Intro to Database Systems

Class 20: Decomposition & Schema Normalization

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/
Review: Database Design

Requirements Analysis
user needs; what must database do?

Conceptual Design
high level description (often done w/ ER model)

Logical Design
translate ER into DBMS data model

Schema Refinement
consistency, normalization

Physical Design
indexes, disk layout
Why schema refinement

what is a bad schema?

a schema with redundancy!

why?

redundant storage & insert/update/delete anomalies

how to fix it?

normalize the schema by decomposing

normal forms: BCNF, 3NF, ...
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

SSN \rightarrow Name, Salary
Motivating Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

SSN → Name, Salary

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>
Motivating Example 2

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>smartphone</td>
<td>black</td>
<td>600</td>
<td>phones</td>
</tr>
<tr>
<td>Lenovo Yoga</td>
<td>laptop</td>
<td>grey</td>
<td>800</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>networking</td>
<td>white</td>
<td>150</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>cables</td>
<td>white</td>
<td>10</td>
<td>stationary</td>
</tr>
<tr>
<td>OnePlus</td>
<td>smartphone</td>
<td>silver</td>
<td>450</td>
<td>phones</td>
</tr>
</tbody>
</table>

name, category → price, color

category → department
Motivating Example 2

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>smartphone</td>
<td>black</td>
<td>600</td>
<td>phones</td>
</tr>
<tr>
<td>Lenovo Yoga</td>
<td>laptop</td>
<td>grey</td>
<td>800</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>networking</td>
<td>white</td>
<td>150</td>
<td>computers</td>
</tr>
<tr>
<td>unifi</td>
<td>cables</td>
<td>white</td>
<td>10</td>
<td>stationary</td>
</tr>
<tr>
<td>OnePlus</td>
<td>smartphone</td>
<td>silver</td>
<td>450</td>
<td>phones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
<th>category</th>
<th>color</th>
<th>price</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPhone</td>
<td>smartphone</td>
<td>black</td>
<td>600</td>
</tr>
<tr>
<td>Lenovo Yoga</td>
<td>laptop</td>
<td>grey</td>
<td>800</td>
</tr>
<tr>
<td>unifi</td>
<td>networking</td>
<td>white</td>
<td>150</td>
</tr>
<tr>
<td>unifi</td>
<td>cables</td>
<td>white</td>
<td>10</td>
</tr>
<tr>
<td>OnePlus</td>
<td>smartphone</td>
<td>silver</td>
<td>450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>category</th>
<th>department</th>
</tr>
</thead>
<tbody>
<tr>
<td>laptop</td>
<td>computers</td>
</tr>
<tr>
<td>networking</td>
<td>computers</td>
</tr>
<tr>
<td>cables</td>
<td>stationary</td>
</tr>
<tr>
<td>smartphone</td>
<td>phones</td>
</tr>
</tbody>
</table>
Reminder: Reasoning for FDs

Assume a relation R with attributes A, B, C

(1) reflexivity e.g., A, B \rightarrow B
(2) augmentation e.g., if A \rightarrow B then A, C \rightarrow B, C
(3) transitivity e.g., if A \rightarrow B and B \rightarrow C then A \rightarrow C
(4) union e.g., if A \rightarrow B and A \rightarrow C then A \rightarrow B, C
(5) decomposition e.g., if A \rightarrow B, C then A \rightarrow B and A \rightarrow C

FD closure of F, \(F^+ \): is the set of all FDs that are implied by F
attr. closure of X: the set of all attributes that are determined by X
minimal cover: subset S of \(F^+ \) such that \(S^+ = F^+ \)
“chopping the relation into pieces using FDs”

DECOMPOSITION
Decomposition

Formally we decompose $R(A_1, ..., A_n)$ by creating:

$R_1(B_1, ..., B_m)$
$R_2(C_1, ..., C_k)$

where $\{B_1, ..., B_m\} \cup \{C_1, ..., C_k\} = \{A_1, ..., A_n\}$

the instance of R_1 is the projection of R onto $B_1, ..., B_m$
the instance of R_2 is the projection of R onto $C_1, ..., C_k$
“Good” Decomposition

(1) minimize redundancy

(2) avoid information loss (lossless-join)

(3) preserve FDs (dependency preserving)

(4) ensure good query performance
Information Loss

Decompose into:
\[R_1(\text{SSN, Name, Salary}) \]
\[R_2(\text{Name, Telephone}) \]

can we reconstruct \(R \)?
Lossless Decomposition

\[
\begin{align*}
R(A,B,C) & \quad \text{decompose} \\
R_1(A,B) & \\
R_2(B,C) & \\
R'(A,B,C) & \quad \text{recover (join on B)}
\end{align*}
\]

the decomposition is lossless-join if
for any initial instance \(R, R = R' \)
Lossless Criterion

given:
• a relation $R(A)$
• a set F of FDs
• a decomposition of R into $R_1(A_1)$ and $R_2(A_2)$

the decomposition is *lossless-join if and only if* at least one of the following FDs is in F^+ (closure of F):

1. $A_1 \cap A_2 \rightarrow A_1$
2. $A_1 \cap A_2 \rightarrow A_2$
Example

Relation $R(A, B, C, D)$
FD $A \rightarrow B, C$

what is the F^+?

Lossy

decomposition into $R_1(A, B, C)$ and $R_2(D)$

$A_1 \cap A_2$ empty set

Lossless-join

decomposition into $R_1(A, B, C)$ and $R_2(A, D)$

$A_1 \cap A_2 = A$ and $A_1 = A, B, C$

$A \rightarrow A, B, C$ is in F^+
Dependency Preserving

given R and a set of FDs F, we decompose R into R_1 and R_2. Suppose:

R_1 has a set of FDs F_1

R_2 has a set of FDs F_2

F_1 and F_2 are computed from F

it is dependency preserving if by enforcing F_1 over R_1 and F_2 over R_2, we can enforce F over R
(Good) Example

Person (SSN, name, age, canDrink)

SSN \rightarrow name, age
ger \rightarrow canDrink

What is a *dependency preserving* decomposition?

R_1(SSN, name, age) and R_2(age, canDrink)

SSN \rightarrow name, age
age \rightarrow canDrink

Is it also lossless-join?

Yes! $A_1 \cap A_2 = age$ and $A_2 = age, canDrink$

tage \rightarrow age, canDrink is in F^+
(Bad) Example

R (A, B, C)

A \rightarrow B

B, C \rightarrow A

not dependency preserving

R_1 (A, B) and R_2 (A, C)

A \rightarrow B *no FDs!*

A	B
a_1 | b_0
a_2 | b_0

A	C
a_1 | c_0
a_2 | c_0

A	B	C
a_1 | b_0 | c_0
a_2 | b_0 | c_0

the table violates

B, C \rightarrow A
Normal Forms

How “good” is a schema design?
follows normal forms

1NF
2NF
3NF
BCNF
4NF
...

flat tables
atomic values

more restrictive
Normal Forms

How “good” is a schema design?
follows normal forms

- 1NF
- 2NF
- 3NF
- BCNF
- 4NF
- ...

flat tables
atomic values

more restrictive
Boyce-Codd Normal Form (BCNF)

given a relation $R(A_1,\ldots,A_n)$, a set of FDs F, and $X \subseteq \{A_1,\ldots,A_n\}$

R is in BCNF if $\forall X \rightarrow A$ one of the two holds:

- $A \in X$ (that is, it is a trivial FD)
- X is a superkey

in other words: $\forall \text{non-trivial FD } X \rightarrow A, \ X \text{ is a superkey in } R$
BCNF - Example

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

SSN → Name, Salary
key: \{SSN, Telephone\}

FD is not trivial!
so, is SSN a superkey?
no! it is **not** in **BCNF**
BCNF - Example 2

SSN → **Name, Salary**

key: \{SSN\}

FD is not trivial!
so, is SSN a superkey?
yes! it is in **BCNF**

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
</tr>
</tbody>
</table>
BCNF - Example 3

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

key: {SSN, Telephone} the relation is in **BCNF**

why? Is it possible a binary relation to **not** be in **BCNF**?

no FDs
Binary Relations always BCNF

\[R \{(A,B) \} \]

excluding all trivial FDs, there are three cases:

1. \(R \) has no FD
2. \(R \) has one FD, either \(A \rightarrow B \) or \(B \rightarrow A \), or,
3. \(R \) has two FDs, \(A \rightarrow B \) and \(B \rightarrow A \)

(1) trivially in BCNF
(2) in either LHS is the key (hence, superkey)
(3) both, A and B candidate keys
BCNF Decomposition Algorithm

(1) find a FD that violates BCNF:
\[A_1, ..., A_n \rightarrow B_1, ..., B_m \]

(2) decompose \(R \) to \(R_1 \) and \(R_2 \)

\[R_1(A_1, ..., A_n, B_1, ..., B_m) \]
\[R_2(A_1, ..., A_n, \text{all other attributes}) \]

(3) repeat until no BCNF violations are left
(in new tables as well)
Our favorite example!

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

$SSN \rightarrow Name, Salary$ violates BCNF

$A_1 = SSN, B_1 = Name, B_2 = Salary$

Split in two relations:

$R_1(\text{SSN, Name, Salary})$

$R_2(\text{SSN, Telephone})$
Our favorite example!

<table>
<thead>
<tr>
<th>SSN</th>
<th>Name</th>
<th>Salary</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>John</td>
<td>65K</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>Anna</td>
<td>80K</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>John</td>
<td>25K</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SSN</th>
<th>Telephone</th>
</tr>
</thead>
<tbody>
<tr>
<td>987-00-8761</td>
<td>857-555-1234</td>
</tr>
<tr>
<td>987-00-8761</td>
<td>857-555-8800</td>
</tr>
<tr>
<td>123-00-9876</td>
<td>617-555-9876</td>
</tr>
<tr>
<td>787-00-4321</td>
<td>617-555-3761</td>
</tr>
</tbody>
</table>
BCNF Decomposition Properties

removes [certain types of] redundancy

is lossless-join

is not always dependency preserving
BCNF – Lossless Join

Example

R (A, B, C) and FD: $A \rightarrow B$

superkey(s) of the relation?

$\{A, C\}^+, \{A, B, C\}^+ = \{A, B, C\}$

$A \rightarrow B$ violates BCNF (A is not a superkey)

so, the BCNF decomposition is:

$R_1(A, B)$ and $R_2(A, C)$

we can reconstruct it!
BCNF – not dependency preserving

Example

\[R \ (A, B, C) \], FDs: \ A \rightarrow B \ and \ B, C \rightarrow A \]

superkey(s) of the relation?

\{A, C\}^+, \{B, C\}^+, \{A, B, C\}^+ = \{A, B, C\}

\[B, C \rightarrow A \ is \ ok, \ but \ A \rightarrow B \ violates \ BCNF \]

so, the BCNF decomposition is :

\[R_1 \ (A, B) \ and \ R_2 \ (A, C) \]

\[A \rightarrow B \ is \ preserved \ in \ R_1 \]

\[B, C \rightarrow A \ is \ not \ preserved! \]
BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)

author → gender
booktitle → genre, price

candidate key(s)?
{author, booktitle} is the only one

Is it in BCNF?
No, because LHS of both FD are not a superkey!
BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)

\[
\text{author} \rightarrow \text{gender} \\
\text{booktitle} \rightarrow \text{genre, price}
\]

Splitting using: \(\text{author} \rightarrow \text{gender} \)

AuthorInfo (author, gender)

FD \(\text{author} \rightarrow \text{gender} \) (in BCNF!)

Book2 (author, booktitle, genre, price)

FD \(\text{booktitle} \rightarrow \text{genre, price} \)

is booktitle a superkey?

No! \{booktitle, author\} is.

So not in BCNF!
BCNF Decomposition Examples

Books (author, gender, booktitle, genre, price)

- author → gender
- booktitle → genre, price

AuthorInfo (author, gender)

Further splitting with booktitle → genre, price

Book2 (author, booktitle, genre, price)

BookInfo (booktitle, genre, price)

- FD booktitle → genre, price in BCNF!
- is booktitle a superkey? Yes!

BookAuthor (booktitle, author) binary is in BCNF!
what if not dependency preserving?

in some cases BCNF decomposition is not dependency preserving

how to address this?

relax the normalization requirements
Third Normal Form (3NF)

given a relation \(R (A_1,\ldots,A_n) \),
a set of FDs \(F \), and \(X \subseteq \{A_1,\ldots,A_n\} \)
\(R \) is in 3NF if \(\forall X \rightarrow A \) one of the three holds:

- \(A \in X \) (that is, it is a trivial FD)
- \(X \) is a superkey
- \(A \) is part of some key for \(R \)

is a relation in 3NF also in BCNF?

No, but a relation in BCNF is always in 3NF!
Third Normal Form (3NF)

Example

R (A, B, C), FDs C → A and A, B → C

is in 3NF but not in BCNF. Why?

superkeys?
{A, B}, {B, C}, and {A, B, C}

candidate keys?
{A, B} and {B, C}

Compromise: aim for BCNF but settle for 3NF

lossless-join & dependency preserving possible
3NF Algorithm

(1) apply BCNF until all relations are in 3NF

(2) compute a **minimal cover** F' of F

(3) for each non-preserved FD $X \rightarrow A$ in F'
 add a new relation $R(X, A)$
3NF algorithm example

Assume \(R \) (\(A, B, C, D \))

\[
\begin{align*}
A & \rightarrow D \\
A, B & \rightarrow C \\
A, D & \rightarrow C \\
B & \rightarrow C \\
D & \rightarrow A, B
\end{align*}
\]

Superkeys?
\{A\} \{D\} \{A, B\} \{A, D\}, ...

not \{B\}

Step 1: find a BCNF decomposition

\(R_1 \) (\(B, C \))

\(R_2 \) (\(A, B, D \))
3NF algorithm example

Assume $R (A, B, C, D)$

$A \rightarrow D$
$A, B \rightarrow C$
$A, D \rightarrow C$
$B \rightarrow C$
$D \rightarrow A, B$

Step 2: find a minimal cover

$A \rightarrow D$
$B \rightarrow C$
$D \rightarrow A$
$D \rightarrow B$
3NF algorithm example

Assume R (A, B, C, D)

$A \rightarrow D$
$A, B \rightarrow C$
$A, D \rightarrow C$
$B \rightarrow C$
$D \rightarrow A, B$

Step 3: add a new relation for not preserved FDs

$A \rightarrow D$
$B \rightarrow C$
$D \rightarrow A$
$D \rightarrow B$

$R_1 (B, C)$
$R_2 (A, B, D)$

all FD are preserved!
both are in BCNF!
Is Normalization Always Good?

Example 1: suppose A and B are always used together, but normalization puts them in different tables (e.g., hours_worked and hourly_rate)

decomposition might produce **unacceptable performance loss**

Example 2: data warehouses
huge historical DBs, rarely updated after creation
joins expensive or impractical
[we want “flat” tables, a.k.a, denormalized]
Example

R (C, S, J, D, P, Q, V)
C → S, J, D, P, Q, V
J, P → C
S, D → P
J → S

Step 1:
R₁ (S, D, P)
R₂ (C, S, J, D, Q, V)

superkeys?
{C}, {J, P}, {D, J}, ...
not {S, D}
Example

R (C, S, J, D, P, Q, V)
C → S, J, D, P, Q, V
J, P → C
S, D → P
J → S

Step 1b:
R_1 (S, D, P)
R_2' (J, S)
R_3 (C, J, D, Q, V)

superkeys of R_2 (C, S, J, D, Q, V)?
{C}, ... not {J}
Example

R (C, S, J, D, P, Q, V)
C → S, J, D, P, Q, V
J, P → C
S, D → P
J → S

Step 2: Minimal Cover

C → J, C → D, C → Q, C → V
J, P → C
S, D → P
J → S

R₁ (S, D, P)
R₂ (J, S)
R₃ (C, J, D, Q, V)
R₄ (J, P, C)

are they all preserved?

No!

Step 3: need to add R₄ (J, P, C)
Example

R (C, S, J, D, P, Q, V)
C → S, J, D, P, Q, V
J, P → C
S, D → P
J → S

Step 2: Minimal Cover

C → J, C → D, C → Q, C → V
J, P → C
S, D → P
J → S

R_1 (S, D, P)
R_2' (J, S)
R_3 (C, J, D, Q, V)
R_4 (J, P, C)

are they all preserved?

No!

Step 3: need to add R_4 (J, P, C)

did we just introduce redundancy?
Lesson!

theory of normalization is a guide

cannot always give a “perfect” solution

redundancy
alternatives
query performance
Summary

fix bad schemas (redundancy) by decomposition

lossless-join

dependency preserving

Desired normal forms

BCNF: only superkey FDs

3NF: superkey FDs + dependencies to prime attributes in RHS

Next: transaction management