Transactions

Exercise 1 (16.3). Consider a database with objects X and Y and assume that there are two transactions T_1 and T_2. Transaction T_1 reads object X, and then writes objects Y and X. Transaction T_2 reads object X, then reads object X once more, and finally writes objects X and Y (i.e. T_1: $R(X), W(Y), W(X)$; T_2: $R(X), R(X), W(X), W(Y)$)

1. Give an example schedule with actions of transactions T_1 and T_2 on objects X and Y that results in a write-read conflict.
2. Give an example schedule with actions of transactions T_1 and T_2 on objects X and Y that results in a read-write conflict.
3. Give an example schedule with actions of transactions T_1 and T_2 on objects X and Y that results in a write-write conflict.
4. For each of the three schedules, show that Strict 2PL disallows the schedule.

Solution

Answer 16.3 The answer to each question is given below.

1. The following schedule results in a write-read conflict:
 T_2: $R(X), T_2$: $R(Y), T_2$: $W(X), T_1$: $R(X)$...
 T_1: $R(X)$ is a dirty read here.

2. The following schedule results in a read-write conflict:
 T_2: $R(X), T_2$: $R(Y), T_1$: $R(X), T_1$: $R(Y), T_1$: $W(X)$...
 Now, T_2 will get an unrepeatable read on X.

3. The following schedule results in a write-write conflict:
 T_2: $R(X), T_2$: $R(Y), T_1$: $R(X), T_1$: $R(Y), T_1$: $W(X), T_2$: $W(X)$...
 Now, T_2 has overwritten uncommitted data.

4. Strict 2PL resolves these conflicts as follows:

 (a) In S2PL, T_1 could not get a shared lock on X because T_2 would be holding an exclusive lock on X. Thus, T_1 would have to wait until T_2 was finished.

 (b) Here T_1 could not get an exclusive lock on X because T_2 would already be holding a shared or exclusive lock on X.

 (c) Same as above.