
CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 11: The Storage Layer

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

https://bu-disc.github.io/CS460/

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

The Storage Layer
DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

Readings: Chapter 9.1

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

DBMS Layer-Cake

3

Queries

TODAY à

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

Also: Concurrency
Control & Recovery

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

DBMS Layer-Cake

4

Also managed
by OS à

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Why not OS?
Layers of abstraction are good … but:

Unfortunately, OS often gets in the way of DBMS

DBMS needs to do things “its own way”
Specialized prefetching
Control over buffer replacement policy

LRU not always best (sometimes worst!!)

Control over thread/process scheduling
“Convoy problem” arises when OS scheduling conflicts with DBMS locking

Control over flushing data to disk
WAL protocol requires flushing log entries to disk

5

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Disks and Files
DBMS stores information on disks.

In an electronic world, disks
are a mechanical anachronism!

This has major implications for DBMS design!
READ: transfer data from disk to main memory (RAM).
WRITE: transfer data from RAM to disk.
Both are high-cost operations, relative to
in-memory operations, so must be planned carefully!

6

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Why Not Store It All in Main Memory?
Costs too high

High-end Databases today in the Petabyte range.
~ 60% of the cost of a production system is in the disks.

Main memory is volatile
We want data to be saved between runs. (Obviously!)

But, main-memory database systems do exist!
Smaller size, performance optimized
Volatility is ok for some applications

7

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

What about Flash?
Flash chips used for >20 years
Flash evolved

USB keys
Storage in mobile devices
Consumer and enterprise flash disks (SSD)

Flash in a DBMS
Main storage
Accelerator/enabler (Specialized cache, logging device)

8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The Storage Hierarchy

9

Smaller, Faster

Bigger, Slower

CPU

L1 Cache…

L3 Cache

Main Memory

Flash Storage

Magnetic Disk

Magnetic Tape

Flash
Storage

Main memory (RAM) for
currently used data.

Disk for the main database
(secondary storage).

Tapes for archival storage
(tertiary storage).

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

memory hierarchy (by Jim Gray)

Jim Gray, IBM, Tandem, Microsoft, DEC
“The Fourth Paradigm” is based on his vision
ACM Turing Award 1998
ACM SIGMOD Edgar F. Codd Innovations award 1993

registers/CPU

on chip cache

on board cache

memory

disk

tape

2x

10x

100x

106x

109x

my head
~0

this room
1min

this building
10min

Washington, DC
5 hours

Pluto
2 years

Andromeda
2000 years

tape?
sequential-only magnetic storage

still a multi-billion industry

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

The Storage Layer
DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

Readings: Chapter 9.1, 9.2, HDD paper

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Disks
Secondary storage device of choice.
Main advantage over tapes: random access vs. sequential.
Data is stored and retrieved in units called disk blocks or pages.
Unlike RAM, time to retrieve a disk page varies depending upon
location on disk.

Therefore, relative placement of pages on disk has major impact on DBMS
performance!

13

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Anatomy of a Disk

14

Platters

The platters spin (5-15 kRPM). Spindle

The arm assembly is moved in or out to
position a head on a desired track.
Tracks under heads make a cylinder
(imaginary!).

Disk head

Arm movement

Arm assembly

Only one head reads/writes at
any one time.

Tracks

Sector

! Block size is a multiple
of sector size (which is fixed).
!Newer disks have several “zones”,
with more data on outer tracks.

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Accessing a Disk Page

Time to access (read/write) a disk block:
– seek time (moving arms to position disk head on track)
– rotational delay (waiting for block to rotate under head)
– transfer time (actually moving data to/from disk surface)

15

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Seeking in modern disks
Seek time discontinuity

Short seeks are dominated by “settle time”
– Move to one of many nearby tracks within settle time
– D is on the order of tens to hundreds
– D gets larger with increase of disk track density

17

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Rotational Delay

18

Head Here

Block I Want

if the disk rotates with 10 KRPM, and I want to read
2/3 of the track away what is the rotational delay?

(1/10000)*60 =
10-4 * 60 = 6 *10-3 = 6ms
so, 2/3 * 6ms = 4ms

what if I am constantly
reading 4KB pages like that?

4KB/4ms = 1MB/s

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Seek time & rotational delay dominate
– Seek time varies from about 1 to 20 ms
– Rotational delay varies from 0 to 10 ms
– Transfer rate is < 1ms per 4KB page

Key to lower I/O cost:
reduce seek/rotation delays!

Also note: For shared disks most time
spent waiting in queue for access to
arm/controller

19

Seek

Rotate

Transfer

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Arranging Pages on Disk
“Next” block concept:

– blocks on same track, followed by
– blocks on same cylinder, followed by
– blocks on adjacent cylinder

Blocks in a file should be arranged sequentially on disk (by
“next”), to minimize seek and rotational delay.

An important optimization: pre-fetching
– See R&G page 323

20

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Rules of thumb…

1. Memory access much faster than disk I/O (~ 1000x)

2. “Sequential” I/O faster than “random” I/O (~ 10x)

22

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Disk Space Management
Lowest layer of DBMS software manages space on disk
Higher levels call upon this layer to:

– allocate/de-allocate a page
– read/write a page

Best if a request for a sequence of pages is satisfied by pages
stored sequentially on disk! Higher levels don’t need to know
if/how this is done, or how free space is managed.

23

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

The Storage Layer
DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management

SSD paper

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Flash disks
Secondary storage or caching layer.
Main advantage over disks:

random reads as fast as sequential reads
BUT: slow random writes (slower than reads)

pages (like disks) and pages organized in flash blocks

unlike HDD, like RAM:
time to retrieve a page is not related to location on flash disk.

26

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The internals of flash disks

27

FlashFlashFlash

Flash
Controller

FlashFlashFlashInternal
Memory

Internal
CPU

Interface (SATA / PCI)

SSD

Flash Package

Dies

Planes

Blocks

Pages

Interconnected flash chips

No mechanical limitations

Maintain the block API –
compatible with disks layout

Internal parallelism in
read/write

Complex software driver

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Accessing a flash page
Access time depends on

– Device organization (internal parallelism)
– Software efficiency (driver)
– Bandwidth of flash packages (bus speed)

Flash Translation Layer (FTL)
– Complex device driver (firmware)
– Tunes performance and device lifetime

28

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Flash disks vs HDD
HDD

ü Large – inexpensive capacity
x Inefficient random reads

Flash disks
x Small – expensive capacity
ü Very efficient random reads

29

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

The Storage Layer
DBMS layers and storage hierarchy

Disks

Flash disks

Buffer Management
Readings: Chapter 9.3, 9.4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recall the BIG Picture

31

next

Queries

DB

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Buffer Management in a DBMS

Data must be in RAM for DBMS to operate on it!
Buffer Manager hides the fact that not all data is in RAM

(just like hardware cache policies hide the fact that not all data is in the caches)
32

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

When a Page is Requested ...
Buffer pool information table contains:
<frame#, pageid, pin_count, dirty>

If requested page is not in pool & buffer pool is full:
– Choose a frame for replacement (only un-pinned pages are candidates)
– If frame is “dirty”, write it to disk
– Read requested page into chosen frame

Pin the page and return its address.

33

! If requests can be predicted (e.g., sequential scans)
pages can be pre-fetched several pages at a time!

how many queries still need the page

has the page been updated

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

More on Buffer Management
Requestor of page must unpin it, and indicate whether page has
been modified:

– dirty bit is used for this.

Page in pool may be requested many times,
– a pin count is used. A page is a candidate for replacement iff pin count = 0

(“unpinned”)

CC & recovery may entail additional I/O when a frame is chosen
for replacement. (Write-Ahead Log protocol; more later.)

34

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Buffer Replacement Policy
Frame is chosen for replacement by a replacement policy:

– Least-recently-used (LRU), MRU, Clock, etc.

Policy can have big impact on # of I/O’s;
depends on the access pattern.

35

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

LRU Replacement Policy
Least Recently Used (LRU)

– for each page in buffer pool, keep track of time last unpinned
– replace the frame which has the oldest (earliest) time
– very common policy: intuitive and simple

Problems?
Problem: Sequential flooding

– LRU + repeated sequential scans.
– # buffer frames < # pages in file means each page request causes an I/O.

MRU much better in this situation (but not in all situations, of course).

36

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

37

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

38

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

39

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 2 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

40

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

41

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

42

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

43

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 6 7 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

44

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 7 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

45

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

46

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

47

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 2 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

48

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

49

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

50

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

5 6 7 8 for 2 scans every page access
was a miss (had to go to disk)
2*8=16 disk accesses

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

51

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

52

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 5

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

53

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 6

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

54

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 7

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

55

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 3 8

can re-use those!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

56

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 4 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

57

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 5 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

58

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 6 8

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sequential Flooding – Illustration

59

1 2 3 4 5 6 7 8

BUFFER POOL

LRU:

MRU:

Repeated scan of file …

BUFFER POOL

1 2 7 8
for the 2nd scan we were able
to use 4 pages again, so we
had 4 disk accesses:
8+4 = 12 disk accesses

can re-use this as well!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

“Clock” Replacement Policy
An approximation of LRU.
Arrange frames into a cycle, store

one “reference bit” per frame
When pin count goes to 0, reference bit set on.
When replacement necessary:

do {
if (pincount == 0 && ref bit is off)

choose current page for replacement;
else if (pincount == 0 && ref bit is on)

turn off ref bit;
advance current frame;

} until a page is chosen for replacement;

60

A(1)

B(p)

C(1)

D(0)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Summary
Disks provide cheap, non-volatile storage.

– Random access, but cost depends on location of page on disk; important to
arrange data sequentially to minimize seek and rotation delays.

Buffer manager brings pages into RAM.
– Page stays in RAM until released by requestor.
– Written to disk when frame chosen for replacement (which is sometime after

requestor releases the page).
– Choice of frame to replace based on replacement policy.
– Good to pre-fetch several pages at a time.

61

