
CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 9: SQL, The Query Language – Part II

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

https://bu-disc.github.io/CS460/

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Basic SQL Query

relation-list : a list of relations
target-list : a list of attributes of tables in relation-list
qualification : comparisons using AND, OR and NOT
comparisons are: <attr> <op> <const> or <attr1> <op> <attr2>, where op is:

DISTINCT: optional, removes duplicates
By default SQL SELECT does not eliminate duplicates! (“multiset”)

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

¹³£=>< ,,,,,

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Query Semantics
Conceptually, a SQL query can be computed:

probably the least efficient way to compute a query!
Query Optimization finds the same answer more efficiently

(1) FROM : compute cross-product
of tables

(e.g., Students and Enrolled)

(2) WHERE : Check conditions,
discard tuples that fail

(applying “selection” condition)

(3) SELECT : Delete unwanted fields
(applying “projection”)

(4) if DISTINCT specified, eliminate
duplicate rows

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Range Variables

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND bid=103

SELECT sname
FROM Sailors,Reserves
WHERE Sailors.sid=Reserves.sid AND bid=103

Can use Range Variables – do not need though. Why?

can be
rewritten using
range variables as:

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Expressions

Use AS to provide column names

Can also have expressions in WHERE clause:

SELECT S.age, S.age-5 AS age1, 2*S.age AS age2
FROM Sailors S
WHERE S.sname = ‘dustin’

SELECT S1.sname AS name1, S2.sname AS name2
FROM Sailors S1, Sailors S2
WHERE 2*S1.rating = S2.rating - 1

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: String operations
SQL also supports some string operations

“LIKE” is used for string matching.

’_’ stands for any one character
’%’ stands for 0 or more arbitrary characters

>, < string comparison is supported by most systems

SELECT S.age, age1=S.age-5, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Nested Queries

WHERE clause can itself contain an SQL query!

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Nested Queries with Correlation
Subquery must be recomputed for each Sailors tuple.

Think of subquery as a function call that runs a query!

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Set Operations

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid

AND B.color=‘red’
UNION
SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bid=B.bid

AND B.color=‘green’

SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid
AND B.color=‘red’

INTERSECT
SELECT S.sid
FROM Sailors S, Boats B,

Reserves R
WHERE S.sid=R.sid

AND R.bid=B.bid
AND B.color=‘green’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: ANY and ALL Set-Comparison Operators
Find sailors with rating greater than the rating of at least one sailor called ‘Horatio’:

Find sailors with rating greater than the rating of all 20-year old sailors:

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

SELECT *
FROM Sailors S
WHERE S.rating > ALL (SELECT S2.rating

FROM Sailors S2
WHERE S2.age = 20)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Set-Difference using NOT IN

Find all sailors who have not reserved a red boat
SELECT S.sid
FROM Sailors S
WHERE S.sid NOT IN

(SELECT R.sid
FROM Reserves R, Boats B
WHERE R.bid = B.bid

AND B.color = ‘red’)

Nested – NO correlation!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: Set-Difference using NOT EXISTS

Find all sailors who have not reserved a red boat
SELECT S.sid
FROM Sailors S
WHERE NOT EXISTS

(SELECT *
FROM Reserves R, Boats B
WHERE R.sid = S.sid

AND R.bid = B.bid
AND B.color = ‘red’)

Nested – correlation!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregate Operators
Significant extension of relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

single column

SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Find name and age of the oldest sailor(s)

The first query is incorrect!

Third query equivalent to second query
allowed in SQL/92 standard, but not
supported in some systems.

SELECT S.sname, MAX (S.age)
FROM Sailors S

SELECT S.sname, S.age
FROM Sailors S
WHERE S.age =

(SELECT MAX (S2.age)
FROM Sailors S2)

SELECT S.sname, S.age
FROM Sailors S
WHERE (SELECT MAX (S2.age)

FROM Sailors S2)
= S.age

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

ARGMAX?

The Sailor with the highest rating
What about ties for highest?

SELECT *
FROM Sailors S
WHERE S.rating >= ALL

(SELECT S2.rating
FROM Sailors S2)

SELECT *
FROM Sailors S
WHERE S.rating =
(SELECT MAX(S2.rating)

FROM Sailors S2)

SELECT *
FROM Sailors S
ORDER BY rating DESC
LIMIT 1;

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Division in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S for which ...

there is no boat B without …

a Reserves tuple
showing S reserved B

Find sailors who have reserved all boats.

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

SQL DDL

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Recap: SQL DDL

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

SQL DDL – General Constraints

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students,
CHECK grade LIKE ‘A’ OR grade LIKE ‘B’

OR grade LIKE ‘C’ OR grade LIKE ‘D’)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

SQL DDL – General Constraints

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students,
CONSTRAINT checkGrade
CHECK (grade LIKE ‘A’ OR grade LIKE ‘B’

OR grade LIKE ‘C’ OR grade LIKE ‘D’))

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

SQL DDL – General Constraints

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students,
CONSTRAINT checkNumber
CHECK ((SELECT COUNT (sid) FROM Students)

+
(SELECT COUNT DISTINCT (cid) FROM Enrolled)

< 1000))

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

JOINS

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Joins
SELECT (column_list)
FROM table_name
[INNER | NATURAL | {LEFT | RIGHT | FULL} | {OUTER}]
JOIN table_name

ON qualification_list
WHERE …

INNER is default

SELECT sname FROM sailors S JOIN reserves R ON S.sid=R.sid;

SELECT sname FROM sailors S NATURAL JOIN reserves R
WHERE R.bid = 102;

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Inner Joins

SELECT s.sid, s.sname, r.bid

FROM Sailors s, Reserves r

WHERE s.sid = r.sid

SELECT s.sid, s.sname, r.bid

FROM Sailors s INNER JOIN Reserves r

ON s.sid = r.sid

They are
equivalent!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Left Outer Join
Returns all matched rows, plus all unmatched rows from the table on the left of the
join clause

(use nulls in fields of non-matching tuples)

SELECT s.sid, s.sname, r.bid

FROM Sailors s LEFT OUTER JOIN

Reserves r

ON s.sid = r.sid;

Returns all sailors & bid for boat in any of their reservations
Note: no match for s.sid? r.sid IS NULL!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

SELECT s.sid, s.sname, r.bid
FROM Sailors s LEFT OUTER JOIN Reserves r

ON s.sid = r.sid;

sid sname rating age
22 Dustin 7 45.0
31 Lubber 8 55.5
95 Bob 3 63.5

sid bid day
22 101 10/10/96
95 103 11/12/96

NULL

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Right Outer Join
Returns all matched rows, plus all unmatched rows from the table on the right of the
join clause

(use nulls in fields of non-matching tuples)

SELECT r.sid, b.bid, b.bname

FROM Reserves r RIGHT OUTER JOIN

Boats b

ON r.bid = b.bid;

Returns all boats & information on which ones are reserved
Note: no match for b.bid? r.bid IS NULL!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Full Outer Join
Full Outer Join returns all (matched or unmatched) rows from the tables on both sides
of the join clause

SELECT r.sid, b.bid, b.bname

FROM Reserves2 r FULL OUTER JOIN

Boats2 b

ON r.bid = b.bid;

Returns all boats & all information on reservations
No match for r.bid?

– b.bid IS NULL AND b.bname is NULL
No match for b.bid?

– r.sid is NULL

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

GROUP BY AND HAVING

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

GROUP BY and HAVING
So far, we’ve applied aggregate operators to all (qualifying) tuples.

Sometimes, we want to apply them to each of several groups of tuples.

Consider: Find the age of the youngest sailor for each rating level.
In general, we don’t know how many rating levels exist, and what the rating values
for these levels are!
Suppose we know that rating values go from 1 to 10; we can write 10 queries that
look like this (!):

SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Queries With GROUP BY and HAVING

Group rows by columns in grouping-list
Every column from target-list mast appear in the grouping-list
HAVING restricts through an aggregate which group-rows are
part of the result

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification
GROUP BY grouping-list
[HAVING group-qualification]

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Conceptual Evaluation

Attributes in target-list must also be in grouping-list.

Expressions in group-qualification must have a single value
per group! That is, attributes in group-qualification must be
part of an aggregate op / must appear in the grouping-list.

(1) Cross-product of relation-
list

(2) Select only tuples that
follow the where clause

qualification)

(3) Partition rows by the value
of attributes in grouping-list

(4) Select only groups that
follow the group-qualification

(5) One answer tuple is
generated per qualifying

group, showing target-list

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Find the age of the youngest sailor with age ³ 18,
for each rating with at least 2 such sailors

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

rating
7 35.0

rating age
1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

2

rating m-age count
1 33.0 1
7 35.0 2
8 55.0 1
10 35.0 1

3

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

4

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Can you do this using Group By and Having?

SELECT S.name
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
GROUP BY S.name, S.sid
HAVING COUNT(DISTINCT R.bid) =

(Select COUNT (*) FROM Boats)

Find sailors who have reserved all boats.

Note: must have both sid and name in the GROUP BY clause. Why?
(1) Attributes in target-list must also be in grouping-list.
(2) Expressions in group-qualification must have a single value per group!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

SELECT S.name, S.sid
FROM Sailors S, reserves R
WHERE S.sid = R.sid
GROUP BY S.name, S.sid
HAVING COUNT(DISTINCT R.bid) =

(Select COUNT (*) FROM Boats)

s.name s.sid r.sid r.bid
Dustin 22 22 101
Lubber 31 22 101
Bob 95 22 101
Dustin 22 95 102
Lubber 31 95 102
Bob 95 95 102

s.name s.sid bcount
Dustin 22 1
Bob 95 1

bid bname color
101 Interlake blue
102 Interlake red
103 Clipper green
104 Marine red

Count (*) from boats = 4

Apply having clause to groups

s.name s.sid

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sorting the Results of a Query
ORDER BY column [ASC | DESC] [, ...]

Extra reporting power obtained by combining with aggregation.

SELECT S.rating, S.sname, S.age
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
ORDER BY S.rating, S.sname;

SELECT S.sid, COUNT (*) AS redrescnt
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
GROUP BY S.sid
ORDER BY redrescnt DESC;

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Summary: The SQL Query

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

ORDER BY attribute-list

