CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 8:SQL, The Query Language — Part |

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

https://bu-disc.github.io/CS460/

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Today’s course

intuitive way to ask queries

unlike procedural languages (C/C++, java)

[which specify how to solve a problem (or answer a question)]

SQL is a declarative query language

[we ask what we want and the DBMS is going to deliver]

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Introduction to SQL

SQL is a relational query language
supports simple yet powerful querying of data

It has two parts:

CREATE TABLE
—

DDL: Data Definition Language (define and modify schema)
(we discussed about that in Relational Model) INSERT/UPDATE/DELETE

DML: Data Manipulation Language (intuitively query data)

TodRY*

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reiterate some terminology
Students— """

Relation (or table)

Row (or tuple)

Column (or attribute)

sid

name

login

age

gpa

_— schema

53666
53688

Jones
Smith

jones@cs

smith@ee

18
18

3.4
3.2

" data

(instance)

sid

53688

name

Smith

login

smith@ee

age

18

gpa

3.2

name

login

age

gpa

Jones
Smith

jones@cs

smith@ee

18
18

3.4
3.2

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reiterate some terminology

sid |name | login |age|gpa
53666 |Jones |jones@cs |18 |3.4
53688 |Smith |smith@ee | 18 |3.2

The PK of a relation is the column (or the group of
columns) that can uniquely define a row.

Primary Key (PK)

In other words:

Two rows cannot have the same PK.

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The simplest SQL query

“find all contents of a table”

in this example: “Find all info for all students”

SELECT *
FROM Students S

sid

name

login

age

gPa

53666
53688
53777

Jones
Smith
White

jones@cs
smith@ee
white@cs

18
18
19

3.4
3.2
4.0

to find just names and logins, replace the first line:
SELECT S.name, S.login

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Show specific columns

“find name and login for all students”

SELECT S.name, S.1og'in name | login

FROM Students S Jones |jones@cs
Smith |[smith@ee

White ‘white@cs

this is called: “project name and login from table Students”

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Show specific rows

“find all 18 year old students”

SELECT * sid |name | login |age |gpa

FROM Students S 53666 |Jones |jones@cs |18 |3.4
WHERE S age=18 53688 |Smith |smith@ee |18 |3.2

this is called: “select students with age 18.”

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Querying Multiple Relations

can specify a join over two tables as follows:

SELECT Students.name,
FROM Students,

Enrolled.cid
Enrolled

WHERE Students.sid=Enrolled.sid
AND Enrolled.grade=‘B’

sid cid grade sid 'name login |age gpa
53831 |[Carnaticl101 C 53666 Jones jones@cs |18 3.4
53831 |Reggae203 B 53688 Smith |smith@ee | 18 | 3.2
53650 | Topologyll12 | A
53666 |Historyl05 B
_ Studetns.name | Enrolled.cid
result =

Jones

History105

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Basic SQL Query

SELECT
FROM

relation-list : a list of relations WHERE

[DISTINCT] target-list
relation-11st
qualification

target-list : a list of attributes of tables in relation-list

qualification : comparisons using AND, OR and NOT

comparisons are: <attr> <op> <const> or <attrl> <op> <attr2>, where op is:

<9 >9 :9 SD 29 i
DISTINCT: optional, removes duplicates

By default SQL SELECT does not eliminate duplicates! (“multiset”)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Query Semantics

Conceptually, a SQL query can be computed:

(

-

(1) FROM : compute cross-product
of tables
(e.g., Students and Enrolled)

~

(

[

_

(3) SELECT : Delete unwanted fields
(applying “projection”)

\

J

(2) WHERE : Check conditions,
discard tuples that fail
(applying “selection” condition)

~

J

-

-

(4) if DISTINCT specified, eliminate
duplicate rows

\

J

probably the least efficient way to compute a query!
Query Optimization finds the same answer more efficiently

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Remember the query and the data

SELECT Students.name, Enrolled.cid
FROM Students, Enrolled
WHERE Students.sid=Enrolled.sid
AND Enrolled.grade=‘B’

sid cid grade sid 'name login |age gpa
53831 |CarnaticlO1 53666 Jones |jones@cs |18 3.4
53831 [Reggae203 53688 Smith smith@ee 18 3.2

53650 |Topologyll12
53666 |Historyl05

> WO

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Step 1 — Cross Product

Combine with cross-product all tables of the FROM clause.

S.sid |S.name| S.login |S.age|S.gpa|E.sid E.cid E.grade
53666 |Jones |jones@cs | 18 3.4 |53831 |CarnaticlOl C
53666 |Jones |jones@cs | 18 |3.4 |53832|Reggae203 B
53666 |Jones |jones@cs | 18 3.4 |53650|Topologyl12| A
53666 |Jones |jones@cs |18 |3.4 |53666 | Historyl05 B
53688 | Smith |smith@ee|18 3.2 |53831 |CarnaticlOl C
53688 | Smith |smith@ee|18 3.2 53831 |Reggaec203 B
53688 | Smith |smith@ee|18 3.2 53650 | Topologyll12| A
53688 | Smith |smith@ee| 18 3.2 53666 | History105 B
SELECT Students.name, Enrolled.cid

FROM Students,
WHERE Students.sid=Enrolled.sid
AND Enrolled.grade=‘B’

Enrolled

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Step 2 - Discard tuples that fail predicate

Make sure the WHERE clause is true!

S.sid [S.name| S.login |S.age|S.gpa|E.sid E.cid E.grade
53666 |Jones |jones(@cs | 18 3.4 |53831 |CarnaticlOl
53666 |Jones |jones(@cs | 18 3.4 |53832|Reggaec203
153666 | Jones [jones(@cs | 18 34 [53650([Topologvl12| A
(53666} Jones |jones@cs | 18 3.4 (53666DHistory105 | (B)
53688 |Smith |smith@ee |18 3.2 |53831 |CarnaticlO1 C
53688 |Smith |smith@ee |18 3.2 53831 |Reggae203
A
(B

53688 |Smith |smith@ee|18 3.2 |53650| Topologyll12
53688 | Smith |smith@ee| 18 3.2 53666 | History105 B

SELECT Students.name, Enrolled.cid
FROM Students, Enrolled
WHERE Students.sid=Enrolled.sid
AND Enrolled.grade=‘B’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Step 3 - Discard Unwanted Columns

Show only what is on the SELECT clause.

S.sid [S.name| S.login |S.age|S.gpa | E.sid E.cid E.grade
53666 [Jones |[jones@cs | 18 3.4 |53831 [|CarnaticlO1 l

53666 [Jones |[jones@cs | 18 3.4 |53832|Reggae203
;36@ Jones [jones@cs |18 3.4 153650 [Topologvl112] A
53666)Jones |jones@es |18 [3.4 (53666)History105 | (B)
53688 |Smith |smith@ee |18 3.2 |53831 |[|CarnaticlO1 C
53688 |Smith |smith@ee| 18 3.2 |53831 |[Reggae203
A
(B)

/ \

53688 |Smith |smith@ee| 18 3.2 53650 |[Topologyl12
53688 |Smith |smith@ee| 18 3.2 |53666 |[History105

SELECT Students.name, Enrolled.cid
FROM Students, Enrolled
WHERE Students.sid=Enrolled.sid
AND Enrolled.grade=‘B’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassou lis

Now the Details...

We will use these instances of
relations in our examples.

Reserves|sid |bid day
22 101 [10/10/16
95 103 |11/12/16
Sailors |sid sname rating age
22 Dustin @ 7 45.0
31 Lubber| 8 55.5
95 Bob 3 63.5
Boats |bid |bname |color
101 |Interlake |blue
102 |Interlake |red
103 |Clipper |green
104 |Marine |red

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Another Join Query

SELECT sname
FROM Sailors, Reserves
WHERE Saillors.sid=Reserves.sid AND bi1d=103
(sid) [sname |rating|age |(sid) |bid |day
22 |dustin 7 145.0 | 22 (101 |10/10/16
22 |dustin| 7 |45.0 | 95 |103 (11/12/16
31 [lubber | 8 55,5 | 22 101 (10/10/16
31 (lubber | 8 555 | 95 |103 (11/12/16
95 [Bob 3 (635 | 22 |101 |10/10/16
95 Bob 3 |63.5 | 95 (103 |11/12/16

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Range Variables

can associate “range variables” with the tables in the FROM clause

a shorthand, like the rename operator from relational algebra

saves writing, makes queries easier to understand
“FROM Sailors, Reserves”
“FROM Sailors S, Reserves R”

needed when ambiguity could arise

for example, if same table used multiple times in same FROM (called a “self-join”)
“FROM Sailors S1, Sailors S2”

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Range Variables

SELECT sShnhame
FROM Sailors,Reserves
WHERE Sailors.sid=Reserves.sid AND bi1d=103

can be SELECT S.sname
rewritten using FROM Sailors S, Reserves R
range variablesas: |WHERE S.s1d=R.s1d AND bi1d=103

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Range Variables

an example requiring range variables (self-join)

SELECT Sl.sname, Sl.age, SZ2.sname, SZ2.age
FROM Sailors S1, Sailors S2
WHERE Sl.age > SZ2.age

(N

another one: if you don’t want a projection:

SELECT
FROM Sailors S
WHERE S.age > 20

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Find sailors who have reserved at least one boat

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.s1d=R.s1id

does DISTINCT makes a difference? 7\1 '

what is the effect of replacing S.sid by S.sname in the SELECT clause?
Would adding DISTINCT to this variant of the query make a difference?

v
:
?\

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Expressions

Can use arithmetic expressions in SELECT clause
(plus other operations we’ll discuss later)

Use AS to provide column names

SELECT S.age, S.age-5 AS agel, 2*S.age AS age’
FROM Sailors S
WHERE S.sname = ‘dustin’

Can also have expressions in WHERE clause:

SELECT Sl.sname AS namel, SZ2.shame AS nameZ

FROM Sailors S1, Sailors S2
WHERE 2#*Sl.rating = S2.rating - 1

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

String operations

SQL also supports some string operations

“LIKE” is used for string matching.

SELECT S.age, agel=S.age-5, 2*S.age AS age’
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

7)

stands for any one character

"%’ stands for O or more arbitrary characters

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

More Operations

SQL queries produce new tables

If the results of two queries are union-compatible

(same number and types of columns)

2\
then we can apply logical operations p
UNION
INTERSECTION

SET DIFFERENCE (called EXCEPT or MINUS)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Find sids of sailors who have reserved a red or a green boat

UNION: Can be used to compute the union of any two
union-compatible sets of tuples (which are themselves
the result of SQL queries)

SELECT R.s1d

FROM Boats B,Reserves R

WHERE R.bi1d=B.bi1d AND
(B.color=‘red’ OR B.color=‘green’)

VS.

SELECT R.s1d
FROM Boats B, Reserves R
WHERE R.bi1d=B.bi1d AND B.color=‘red’
UNION SELECT R.s1d
FROM Boats B, Reserves R
WHERE R.bi1d=B.bid AND
B.color=‘green’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Find sids of sailors who have reserved a red and a green boat

If we simply replace OR by AND in the previous query, we get the wrong
answer. (Why?)

Instead, could use a self-join:

SELECT R1l.s1id
FROM Boats Bl, Reserves R1,
Boats B2, Reserves R2
WHERE R1l.si1d=R2.s10
AND R1.bid=Bl.b1c
AND R2.b1d=B2.b1c
AND (Bl.color=‘red’ AND B2.color=‘green’)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

AND Continued...

INTERSECT: discussed in the book. Can be
used to compute the intersection of any
two union-compatible sets of tuples

Also in text: EXCEPT
(sometimes called MINUS)

Included in the SQL/92 standard, but
some systems do not support them

/Key field!

SELECT S.s1id

FROM Sailors S, Boats B,
Reserves R

WHERE S.si1d=R.s1d
AND R.bi1d=B.b1d
AND B.color=‘red’

INTERSECT

SELECT S.s1id

FROM Sailors S, Boats B,
Reserves R

WHERE S.si1d=R.s1d
AND R.bi1d=B.b1d
AND B.color="green’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Your turn ... i

-

1. Find (the names of) all sailors who are over 50 years old

2. Find (the names of) all boats that have been reserved at least
once

3. Find all sailors who have not reserved a red boat (hint: use
“EXCEPT”)

4. Find all pairs of same-color boats

5. Find all pairs of sailors in which the older sailor has a lower
rating

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

1. Find (the names of) all sailors who are over 50 years olc

v
;
7\

SELECT S.snhame
FROM Sailors S
WHERE S.age > 50

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

2. Find (the names of) all boats that have been reserved at least
once

v
:
7\

SELECT DISTINCT B.bname
FROM Boats B, Reserves R
WHERE R.b1d=B.b1d

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

3. Find all sailors who have not reserved a red boat

SELECT S.s1d
FROM Sailors S
EXCEPT
SELECT R.s1d
FROM Boats B,Reserves R
WHERE R.bi1d=B.b1id
AND B.color=‘red’

v
:
7\

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

4. Find all pairs of same-color boats ~\ |

SELECT Bl.bname, B2.bname

FROM Boats Bl, Boats B2

WHERE Bl.color = B2.color
AND Bl.bid < B2.bid

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)
Boats (bid, bname, color)

5. Find all pairs of sailors in which the older sailor has a lower
rating

v
;
7\

SELECT S1.sname, SZ2.snhame
FROM Sailors S1, Sailors S2
WHERE Sl.age > S2.age

AND Sl.rating < S2.rating

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Nested Queries

powerful feature of SQL:

WHERE clause can itself contain an SQL query!
Actually, so can FROM and HAVING clauses.

Names of sailors who have reserved boat #103

SELECT S.Shame

FROM Sailors S

WHERE S.sid IN (SELECT R.sid
FROM Reserves R
WHERE R.b1d=103)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Nested Queries

to find sailors who have not reserved #103, use NOT IN.

To understand semantics of nested queries:

think of a nested loops evaluation

for each Sailors tuple
check the qualification by computing the subquery

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Nested Queries with Correlation

Find names of sailors who have reserved boat #103

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT
FROM Reserves R
WHERE R.b1d=103 AND S.sid=R.si1d)

EXISTS is another set operator, like IN (also NOT EXISTS)

If EXISTS UNIQUE is used, and * is replaced by R.bid, finds sailors with at
most one reservation for boat #103.

UNIQUE checks for duplicate tuples in a subquery;
Subquery must be recomputed for each Sailors tuple.
Think of subquery as a function call that runs a query!

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

More on Set-Comparison Operators

We've already seen IN, EXISTS and UNIQUE. Can also use NOT IN,

NOT EXISTS and NOT UNIQUE.
Also available: op ANY, op ALL

Find sailors whose rating is greater than that of some sailor
called Horatio:

SELECT

WHERE

FROM Sailors S

S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname=‘Horatio’)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Rewriting INTERSECT Queries Using IN

Find sids of sailors who have reserved both a red and a green boat

SELECT R.sid
FROM Boats B, Reserves R
WHERE R.bi1d=B.b1d
AND B.color=‘red’
AND R.s1d IN (SELECT R2.s1d
FROM Boats B2, Reserves R2
WHERE R2.bi1d=B2.b1d
AND B2.color=‘green’)

Similarly, EXCEPT queries can be re-written using NOT IN.

How would you change this to find names (not sids) of Sailors
who’ve reserved both red and green boats? 7\1 |
- ’\

-

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Query #3 revisited ...

3. Find all sailors who have not reserved a red boat
(this time, without using “EXCEPT”)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Answer ...

3. Find all sailors who have not reserved a red boat

SELECT S.s1d
FROM Sailors S
WHERE S.si1d NOT IN
(SELECT R.s1id
FROM Reserves R, Boats B
WHERE R.bi1d = B.b1id
AND B.color = ‘red’)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Another Correct Answer ...

3. Find all sailors who have not reserved a red boat

SELECT S.sid
FROM Sailors S
WHERE NOT EXISTS
(SELECT *
FROM Reserves R, Boats B
WHERE R.si1d = S.sid
AND R.bi1d = B.b1id
AND B.color = ‘red’)

Reserves (sid, bid, day) Sailors (sid, sname, rating, age)

Boats (bid, bname, color)

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Division in SQL

Find sailors who have reserved all boats.

Sailors S for which ...

SELECT S.snhame
FROM Sailors S thereis no boat B without ...
WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
WHERE R.bid=B.b1d
a Reserves tuple AND R.s1d=S.si1d))
showing S reserved B

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregate Operators

Significant extension of relational algebra.

SELECT COUNT ()
FROM Sailors S

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

COUNT (*)

COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)

\ single column

SELECT COUNT (DISTINCT S.rating)

FROM Sailors S
WHERE S.shame=‘Bob’

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregate Operators

SELECT S.shame
FROM Sailors S

COUNT (*)

COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)

MIN (A)

\ single column

WHERE S.rating = (SELECT MAX(S2.rating)

FROM Sailors S2)

SELECT AVG (DISTINCT S.age) 7\1
FROM Sailors S A\
WHERE S.rating=10

CAS CS 460 [Fall 2021] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Find name and age of the oldest sailor(s)

The first query is incorrect!
"SEtEGI__Sﬁiggmgf,MAX*fSTEEE)
.——EEQM,—S&+; Fs S _

SELECT S.sname, S.age
Third query equivalent to second query FROM Sailors S

allowed in SQL/92 standard, but not WHERE 5.age =
supported in some systems. (SELECT MAX (S2.age)

FROM Sailors S2)

SELECT S.shame, S.age
FROM Sailors S
WHERE (SELECT MAX (SZ.age)
FROM Sailors S2)
= S.age

