
CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 25: NoSQL Systems
Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

https://bu-disc.github.io/CS460/

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

What is NoSQL?

14

from “Geek and Poke”

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

What is NoSQL?
An emerging “movement” around non-relational software for Big Data

Roots are in the Google and Amazon homegrown software stacks

Wikipedia: “A NoSQL database provides a mechanism for storage and retrieval of data that use looser consistency
models than traditional relational databases in order to achieve horizontal scaling and higher availability. Some
authors refer to them as "Not only SQL" to emphasize that some NoSQL systems do allow SQL-like query language
to be used.”

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Horizontal_scaling%23Horizontal_and_vertical_scaling
https://en.wikipedia.org/wiki/SQL

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

NoSQL Stores
offer an easy to program storage model

simplification of relational
two attributes (a key and a value)

value has variable size

16

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

NoSQL features
Scalability is crucial!

– load increased rapidly for many applications

Large servers are expensive

Solution: use clusters of small commodity machines
– need to partition the data and use replication (sharding)
– cheap (usually open source!)
– cloud-based storage

17

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

NoSQL features
Sometimes not a well defined schema

Allow for semi-structured data
– still need to provide ways to query efficiently (use of index methods)
– need to express specific types of queries easily

18

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Scalability
Often cited as the main reason for moving from DB technology
to NoSQL

DB Position: there is no reason a parallel DBMS cannot scale to
1000’s of nodes

NoSQL Position: a) Prove it; b) it will cost too much anyway

20

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Flavors of NoSQL
Four main types:

• key-value stores
• document databases
• column-family (aka big-table) stores
• graph databases

Here we will talk more about “Document” databases (MongoDB)

21

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Key-Value Stores
There are many systems like that:
Redis, MemcacheDB, Amazon's DynamoDB, Voldemort

Simple data model: key/value pairs
the DBMS does not attempt to interpret the value

Queries are limited to query by key
– get/put/update/delete a key/value pair
– iterate over key/value pairs

22

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Document Databases
Examples include:
MongoDB, CouchDB, Terrastore

Special type of key/value that value is a document.
– use some sort of semi-structured data model: XML/JSON
– the value can be examined and used by the system (unlike in key/data stores)

Queries based on key (as in key/value stores), but also on the document (value).

Here again, there is support for sharding and replication.
– the sharding can be based on values within the document

23

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The Structure Spectrum

Structured
(schema-first)

Relational
Database

Formatted
Messages

Semi-Structured
(schema-later)

DocumentsXML

Tagged
Text/Media

Unstructured
(schema-never)

Plain Text
Media

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

MongoDB (An example of a Document Database)
Data are organized in collections. A collection stores a set of documents.

Collection (like table) and document (like record)
– but: each document can have a different set of attributes even in the same

collection
– Semi-structured schema!

Only requirement: every document should have an “_id” field
– humongous => Mongo

25

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Example mongodb

{ "_id”:ObjectId("4efa8d2b7d284dad101e4bc9"),
"Last Name": ” Cousteau",
"First Name": ” Jacques-Yves",
"Date of Birth": ”06-1-1910" },

{ "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
"Last Name": "PELLERIN",
"First Name": "Franck",
"Date of Birth": "09-19-1983",
"Address": "1 chemin des Loges",
"City": "VERSAILLES" }

26

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Example Document Database: MongoDB
Key features include:

JSON-style documents
– actually uses BSON (JSON's binary format)

replication for high availability
auto-sharding for scalability
document-based queries
can create an index on any attribute for faster reads

27

under the hood, a simple key-value store called WiredTiger!
design based on LSM-trees

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

MongoDB Terminology
relational term <==> MongoDB equivalent
--
database <==> database
table <==> collection
row <==> document
attributes <==> fields (field-name:value pairs)
primary key <==> the _id field, which is the key associated with
the document

28

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

JSON
JSON is an alternative data model for semi-structured data

– JavaScript Object Notation

Built on two key structures:
– an object, which is a sequence of name/value pairs

{ ”_id": "1000", "name": "Sanders Theatre", "capacity": 1000 }

– an array of values ["123", "222", "333"]

A value can be:
– an atomic value: string, number, true, false, null
– an object
– an array

29

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The _id Field
Every MongoDB document must have an _id field.

its value must be unique within the collection
acts as the primary key of the collection
it is the key in the key/value pair

If you create a document without an _id field:
MongoDB adds the field for you
assigns it a unique BSON (binary JSON) ObjectID
example from the MongoDB shell:

> db.test.save({ rating: "PG-13" })
> db.test.find() { "_id" :ObjectId("528bf38ce6d3df97b49a0569"), "rating" : "PG-13" }

Note: quoting field names is optional (see rating above)

30

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Capturing Relationships in MongoDB
Two options:

1. store references to other documents using their _id values

2. embed documents within other documents

32

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Example relationships

33

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"name": "Tom Benzamin ",
"contact": "987654321",
"dob": "01-01-1991"

}

{
"_id":ObjectId("52ffc4a5d85242602e000000"),
"building": "22 A, Indiana Apt",
"pincode": 123456,
"city": "Los Angeles",
"state": "California"

} Here is an example of embedded relationship:
{

"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address": [

{
"building": "22 A, Indiana Apt",
"pincode": 123456,
"city": "Los Angeles",
"state": "California"

},
{

"building": "170 A, Acropolis Apt",
"pincode": 456789,
"city": "Chicago",
"state": "Illinois"

}] }

{
"_id":ObjectId("52ffc33cd85242f436000001"),
"contact": "987654321",
"dob": "01-01-1991",
"name": "Tom Benzamin",
"address_ids": [

ObjectId("52ffc4a5d85242602e000000"),
ObjectId("52ffc4a5d85242602e000001")

]
}

And here an example of reference based

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Queries in MongoDB
Each query can only access a single collection of documents.
Use a method called

> db.collection.find(<selection>, <projection>)

Example: find the names of all R-rated movies:
> db.movies.find({ rating: 'R' }, { name: 1 })

34

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Projection
Specify the name of the fields that you want in the output with 1 (0 hides the value)

Example:
> db.movies.find({},{"title":1,_id:0})

(will report the title but not the id)

35

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Selection
You can specify the condition on the corresponding attributes using the find:

> db.movies.find({ rating: "R", year: 2000 }, { name: 1, runtime: 1 })

Operators for other types of comparisons:
MongoDB SQL equivalent
$gt, $gte >, >=
$lt, $lte <, <=

$ne !=
Example: find the names of movies with an earnings <= 200000

> db.movies.find({ earnings: { $lte: 200000 }})

For logical operators $and, $or, $nor
use an array of conditions and apply the logical operator among the array conditions:

> db.movies.find({ $or: [{ rating: "R" }, { rating: "PG-13" }] })

36

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregation
Recall the aggregate operators in SQL: AVG(), SUM(), etc.
More generally, aggregation involves computing a result from a collection of data.

MongoDB supports several approaches to aggregation:
– single-purpose aggregation methods
– an aggregation pipeline
– map-reduce

Aggregation pipelines are more flexible and useful (see next):
https://docs.mongodb.com/manual/core/aggregation-pipeline/

37

https://docs.mongodb.com/manual/core/aggregation-pipeline/

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Simple Aggregations
db.collection.count(<selection>)

returns the number of documents in the collection
that satisfy the specified selection document

Example: how may R-rated movies are shorter than 90 minutes?
> db.movies.count({ rating: "R”, runtime: { $lt: 90 }})

db.collection.distinct(<field>, <selection>)
returns an array with the distinct values of the specified field
in documents that satisfy the specified selection document
if omit the query, get all distinct values of that field

Example: which actors have been in one or more of the top 10 grossing movies?
> db.movies.distinct("actors.name”, { earnings_rank: { $lte: 10 }})

38

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregation Pipeline
A very powerful approach to write queries in MongoDB is to use pipelines.

We execute the query in stages.

Every stage gets as input some documents, applies filters/aggregations/projections
and outputs some new documents.

These documents are the input to the next stage (next operator) and so on

Similar to a traditional query plan. But always with one child (no joins!)

39

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregation Pipeline example
Example for the zipcodes database:

> db.zipcodes.aggregate([
{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },

{ $match: { totalPop: { $gte: 10*1000*1000 } } }
])

Here we use group_by to group documents per state, compute sum of population and output documents with _id,
totalPop (_id has the name of the state). The next stage finds a match for all states the have more than 10M
population and outputs the state and total population.

More here: https://docs.mongodb.com/manual/tutorial/aggregation-zip-code-data-set/

40

{
"_id": "10280",
"city": "NEW YORK",
"state": "NY",
"pop": 5574,
"loc": [

-74.016323,
40.710537

]
}

https://docs.mongodb.com/manual/tutorial/aggregation-zip-code-data-set/

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

continued:

41

Output example:
{

"_id" : ”NY",
"totalPop" : 19750000

}

In SQL:

SELECT state, SUM(pop) AS totalPop
FROM zipcodes
GROUP BY state
HAVING totalPop >= (10*1000*1000)

db.zipcodes.aggregate([
{ $group: { _id: "$state", totalPop: { $sum: "$pop" } } },
{ $match: { totalPop: { $gte: 10*1000*1000 } } }

])

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

more examples:

42

db.zipcodes.aggregate([
{ $group: { _id: { state: "$state", city: "$city" }, pop: { $sum: "$pop" } } },
{ $group: { _id: "$_id.state", avgCityPop: { $avg: "$pop" } } }

])

What we compute here?

First we get groups by city and state and for each group we compute the population.
Then we get groups by state and compute the average city population

{
"_id" : {

"state" : "CO",
"city" : "EDGEWATER"

},
"pop" : 13154

}

{
"_id" : "MN",
"avgCityPop" : 5335

}

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aggregation Pipeline example
{ c_id:”A123”

amount: 500,
status: “A”

}
{ c_id:”A123”

amount: 50,
status: “A”

}
{ c_id:”B132”

amount: 200,
status: “A”

}
{ c_id:”A123”

amount: 500,
status: “D”

}

{ c_id:”A123”
amount: 500,
status: “A”

}
{ c_id:”A123”

amount: 50,
status: “A”

}
{ c_id:”B132”

amount: 200,
status: “A”

}

{ _id:”A123”
total: 550

}
{ _id:”B132”

total: 200
}$match

$group

db.orders.aggregate([{ $match: {status: “A”}}
{ $group: {_id:“c_id”, total: {$sum: $amount}}

])

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Other Structure Issues
NoSQL
a) Tables are unnatural
b) “joins” are evil
c) need to be able to “grep” my data

DB
a) Tables are a natural/neutral structure
b) data independence lets you precompute joins under the covers
c) this is a price of all the DBMS goodness you get

44
This is an Old Debate – Object-oriented databases, XML DBs, Hierarchical, …

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Fault Tolerance
DBs: coarse-grained FT – if trouble, restart transaction

– Fewer, Better nodes, so failures are rare
– Transactions allow you to kill a job and easily restart it

NoSQL: Massive amounts of cheap HW, failures are the norm
and massive data means long running jobs

– So must be able to do mini-recoveries
– This causes some overhead (file writes)

45

