
CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 20: Transactional Management Overview

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

https://bu-disc.github.io/CS460/

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Administrativia – what lies ahead
WA6 – on normalization (deadline 11/24)

uploaded a few days ago
PA2 – Row-store vs Column-store & Query Opt. (deadline 11/28)

uploaded a week ago
WA7 (last WA) – on transaction management (deadline 12/6)

coming on 11/24
PA3 (last PA) – on Key-Value Stores (deadline 12/8)

coming on 11/26
Final: last week of semester, on Friday 12/11

2

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

Transaction Management

Overview of ACID

Concurrency control

Logging and recovery

Readings: Chapter 16.1

3

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

4

Query Compiler

query

Execution Engine

Storage Manager
BUFFER POOL

BUFFERS

Buffer Manager

Schema Manager

Data Definition

DBMS: a set of cooperating software modules

Transaction Manager

transaction

Components of a DBMS

LOCK TABLE

Logging/Recovery Concurrency Control

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Problem Statement
Goal: concurrent execution of independent transactions

– utilization/throughput (“hide” waiting for I/Os)
– response time
– fairness

Example:

5

t0:
t1:
t2:
t3:
t4:
t5:

T1:
tmp1 := read(X)

tmp1 := tmp1 – 20

write tmp1 into X

T2:

tmp2 := read(X)

tmp2 := tmp2 + 10

write tmp2 into X
Arbitrary interleaving can lead to inconsistencies

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Definitions
A program may carry out many operations on the data retrieved from the
database

The DBMS is only concerned about what data is read/written from/to the
database

database
a fixed set of named data objects (A, B, C, …)

transaction
a sequence of read and write operations (read(A), write(B), …)

6

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Correctness: The ACID properties
A tomicity: All actions in the transaction happen, or none happen
C onsistency: If each transaction is consistent, and the DB starts
consistent, it ends up consistent
I solation: Execution of one transaction is isolated from that of other
transactions
D urability: If a transaction commits, its effects persist

7

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

Transaction Management

Overview of ACID

Concurrency control

Logging and recovery

Readings: Chapter 16.2-16.6

8

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Transaction Consistency
Consistency - data in DBMS is accurate in modeling real world
and follows integrity constraints

User must ensure that transaction is consistent

Key point:

9

consistent
database

S1

consistent
database

S2

transaction T

C

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Transaction Consistency (cont.)
Recall: Integrity constraints

– must be true for DB to be considered consistent
– Examples:
1. FOREIGN KEY R.sid REFERENCES S
2. ACCT-BAL >= 0

System checks integrity constraints and if they fail, the
transaction rolls back (i.e., is aborted)

– Beyond this, DBMS does not understand data semantics
– e.g., how interest on a bank account is computed

10

C

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Isolation of Transactions
Users submit transactions, and

Each xact executes as if it was running by itself
– Concurrency is achieved by DBMS, which interleaves actions (reads/writes of DB

objects) of various transactions.

Techniques for achieving isolation:
– Pessimistic – don’t let problems arise in the first place
– Optimistic – assume conflicts are rare, deal with them after they happen.

11

I

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Example
Consider two transactions:

12

T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

1st xact transfers $100 from B’s account to A’s
2nd xact credits both accounts with 6% interest
Assume at first A and B each have $1000. What are the legal outcomes of
running T1 and T2?

$2000 *1.06 = $2120
There is no guarantee that T1 will execute before T2 or vice-versa, if both
are submitted together. But, the net effect must be equivalent to these
two transactions running serially in some order

I

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Example (Cont.)
Legal outcomes: A=1166,B=954 or A=1160,B=960
Consider a possible interleaved schedule:

13

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

This is OK (same as T1;T2). But what about:

T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

Result: A=1166, B=960; A+B = 2126, bank loses $6
The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

I
Remember: correct outcome: A+B=$2120

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Anomalies with Interleaved Execution

Reading Uncommitted Data (WR Conflicts, “dirty reads”):

Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

I

14

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Anomalies (Continued)

Overwriting Uncommitted Data (WW Conflicts):

A gets its value from T2
B gets its values from T1

A correct execution would take both values from T2 or both from T1

T1: W(A), W(B), C
T2: W(A), W(B), C

I

15

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Concurrency Control
How to avoid such anomalies?

“lock” data

Strict Two-phase Locking (Strict 2PL) Protocol
obtain an S (shared) lock on object before reading

obtain an X (exclusive) lock on object before writing

(i) obtain locks automatically
(ii) if a xact holds an X lock on object no other xact can acquire S or X
(iii) if a xact holds an S lock, no other xact can acquire X (but only S)

2 phases: first acquire and then release all at the end
important: no lock is ever acquired after one has been released

I

16

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

Transaction Management

Overview of ACID

Concurrency control

Logging and recovery
Readings: Chapter 16.7

17

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Atomicity of Transactions

Two possible outcomes of executing a transaction:
– Transaction might commit after completing all its actions
– or it could abort (or be aborted by the DBMS) after executing some actions

DBMS guarantees that transactions are atomic.
– From user’s point of view: transaction always either executes all its actions, or

executes no actions at all

18

A

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Mechanisms for Ensuring Atomicity
One approach: LOGGING

– DBMS logs all actions so that it can undo the actions of aborted transactions

Another approach: SHADOW PAGES
– (ask me after class if you’re curious)

Logging used by modern systems, because of the need for audit
trail and for efficiency

A

19

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Aborting a Transaction (i.e., Rollback)
If a xact Ti is aborted, all its actions must be undone

If Tj reads object last written by Ti, Tj must be aborted!
– Most systems avoid such cascading aborts by releasing locks only at end of the transaction (i.e.,

strict locking)

– If Ti writes an object, Tj can read it only after Ti finishes

To undo actions of an aborted transaction, DBMS maintains log which
records every write

Log is also used to recover from system crashes:
– All active Xacts at time of crash are aborted when system comes back up

20

why?
to ensure atomicity!

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The Log

Log consists of “records” that are written sequentially
– Typically chained together by transaction id
– Log is often archived on stable storage

Need for UNDO and/or REDO depends on Buffer Manager
– UNDO required if: uncommitted data can overwrite committed data

(STEAL buffer management)
– REDO required if: transaction can commit before all its updates are on disk

(NO FORCE buffer management)

21

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

The Log (cont.)

The following actions are recorded in the log:
– if Ti writes an object, write a log record with:

• If UNDO required need “before image
• IF REDO required need “after image”

– Ti commits/aborts: a log record indicating this action

22

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Logging (cont.)
Write-Ahead Logging protocol

– Log record must go to disk before the changed page!
– All log records for a transaction (including its commit record) must be written to

disk before the transaction is considered “Committed”

All logging and CC-related activities are handled transparently by
the DBMS

23

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

(Review) Goal: The ACID properties
A tomicity: All actions in the transaction happen, or none happen

C onsistency: If each transaction is consistent, and the DB starts consistent, it ends up
consistent

I solation: Execution of one transaction is isolated from that of other transactions

D urability: If a transaction commits, its effects persist

24

What happens if system crashes between
commit and flushing modified data to disk ?

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Durability - Recovering From a Crash
Three phases:

– Analysis: Scan the log (forward from the most recent checkpoint) to identify all
transactions that were active at the time of the crash

– Redo: Redo updates as needed to ensure that all logged updates are in fact
carried out and written to disk

– Undo: Undo writes of all transactions that were active at the crash, working
backwards in the log

At the end – all committed updates and only those updates are
reflected in the database
Some care must be taken to handle the case of a crash occurring
during the recovery process!

25

D

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Summary
Concurrency control and recovery are among the most important
functions provided by a DBMS
Concurrency control is automatic

– System automatically inserts lock/unlock requests and schedules actions of different Xacts
– Property ensured: resulting execution is equivalent to executing the Xacts one after the other in

some order

Write-ahead logging (WAL) and the recovery protocol are used to:
1. undo the actions of aborted transactions, and
2. restore the system to a consistent state after a crash

next: concurrency control in detail!

26

