
CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 12: External Sorting

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS460/

https://midas.bu.edu/classes/CS460/

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Midterm next week on Friday
Thursday 10/22 during class (no lecture): answer questions
about topics covered up to now (including today).

Friday 10/23: we will have the midterm.

Available for 24 hours, you will have 120 minutes to complete it
once you start.

We will announce all the details in a follow-up message in Piazza.
2

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

External Sorting

Intro & 2-way external sorting

General external sorting & performance analysis

Using B+-Trees for sorting

3

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Why Sort?
a classic problem in computer science!

but also a database specific problem, with many use cases:

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Why Sort?
a classic problem in computer science!

but also a database specific problem, with many use cases:
(i) data requested in sorted order

e.g., find students in increasing gpa order

(ii) bulk loading B+ tree index
(iii) eliminating duplicate (why?)
(iv) summarizing groups of tuples (what is that?)
(v) Sort-merge join [more about that later]

GROUP BY!

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sorting Challenges
(easy) problem:
how to sort 1GB data with 1GB memory?

(hard) problem:
how to sort 1GB data with 1MB memory?

why not virtual memory (i.e., swapping on disk)?

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Goal

minimize disk accesses when working under memory constraints

Idea

stream data, calculate something useful, and write back on disk

7

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Streaming Data Through RAM
An important method for sorting & other DB operations
Simple case:

– Compute f(x) for each record, write out the result
– Read a page from INPUT to Input Buffer
– Write f(x) for each item to Output Buffer
– When Input Buffer is consumed, read another page
– When Output Buffer fills, write it to OUTPUT

Reads and Writes are not coordinated
– E.g., if f() is Compress(), you read many pages per write.
– E.g., if f() is DeCompress(), you write many pages per read.

f(x)
RAM

Input
Buffer

Output
Buffer

OUTPUTINPUT

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

2-Way Sort: Requires 3 Buffers
Pass 0: Read a page, sort it, write it.

– only one buffer page is used (as in previous slide)

Pass 1, 2, 3, …, etc.:
– requires 3 buffer pages
– merge pairs of runs into runs twice as long
– three buffer pages used.

Main memory buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Two-Way External Merge Sort

10

Each pass we read + write each page in file.
N pages in the file =>
the number of passes ? ?

So total cost is: ? ?

Idea
Divide and conquer
sort sub-files and merge

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Two-Way External Merge Sort

11

Each pass we read + write each page in file.
N pages in the file =>
the number of passes = 𝑙𝑜𝑔!𝑁 + 1

So total cost is: 2𝑁 𝑙𝑜𝑔!𝑁 + 1

Idea
Divide and conquer
sort sub-files and merge

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

External Sorting

Intro & 2-way external sorting

General external sorting & performance analysis

Using B+-Trees for sorting

12

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

General External Merge Sort

To sort a file with N pages using B buffer pages:
– Pass 0: use B buffer pages. Produce ⁄𝑁 𝐵 sorted runs of B pages each.
– Pass 1, 2, …, etc.: merge B-1 runs.

B Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2.

!More than 3 buffer pages. How can we utilize them?

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

General External Merge Sort
N = 108 pages

5

B=5 buffer pages

5 3… 108/5 = 22 sorted runs of 5 pages each (last run 3 pages)

20 8… 22/4 = 6 sorted runs
of 5 2 4 = 20 pages each (last run 8)20

80 28… 6/4 = 2 sorted runs
of 20 2 4 = 20 pages (last run 28)

Sorted File!

0:

1:

2:

3:

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Cost of External Merge Sort
Number of passes: 1 + 𝑙𝑜𝑔!"# 𝑁/𝐵
Cost = 2𝑁 * (# of passes)
to sort 108 page file with 5 buffers:

– Pass 0: 108/5 = 22 sorted runs of 5 pages each (last run is only 3 pages)
– Pass 1: 22/4 = 6 sorted runs of 20 pages each (last run is only 8 pages)
– Pass 2: 2 sorted runs, 80 pages and 28 pages
– Pass 3: Sorted file of 108 pages

Formula check: 1 + 𝑙𝑜𝑔"#$ 𝑁/𝐵 = 1 + 𝑙𝑜𝑔%22 = 1 + 3

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Number of Passes of External Sort

16

 N B=3 B=5 B=9 B=17 B=129 B=257
100 7 4 3 2 1 1
1,000 10 5 4 3 2 2
10,000 13 7 5 4 2 2
100,000 17 9 6 5 3 3
1,000,000 20 10 7 5 3 3
10,000,000 23 12 8 6 4 3
100,000,000 26 14 9 7 4 4
1,000,000,000 30 15 10 8 5 4

I/O cost is 2N times number of passes: 2 " N " 1 + 𝑙𝑜𝑔!"# 𝑁/𝐵

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-Memory Sort Algorithm
Quicksort is fast (very fast)!!

we generate in Pass 0 N/B #runs of B pages each

can we generate longer runs?
why do we want that?

yes! Idea: maintain a current set as a heap

17

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort
(aka “replacement sort”)

0: read in B-2 blocks
1: find the smallest record greater than the largest value to
output buffer

– add it to the end of the output buffer
– fill moved record’s slot with next value from the input buffer, if empty refill input

buffer
2: else: end run
3: goto (1)

18

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

19

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

20

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 30, 20

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

21

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 20, 30

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

22

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 10, 40 20, 30

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

23

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 40 20, 30 10

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

24

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 40 30 10, 20

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

25

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 30, 40 10, 20

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

26

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 22, 17 30, 40 10, 20

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

update the heap

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

27

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 22, 20 30, 40 10, 17

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

28

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 20, 22 30, 40

10, 17

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

29

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 30, 40 20, 22

10, 17

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

30

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 25, 73 30, 40 20, 22

10, 17

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

here we end up writing both values,
one at a time (no change by resorting)

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

31

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 25, 73 30, 40

10, 17, 20, 22

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

32

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 40, 73 25, 30

10, 17, 20, 22

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

33

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 16, 26 40, 73 25, 30

10, 17, 20, 22

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

34

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 16, 73 30, 40 25, 26

10, 17, 20, 22

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

35

30, 20 10, 40 22, 17 25, 73 16, 26

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 16, 73 30, 40

10, 17, 20, 22, 25, 26

input outputcurrent

file (on disk)

21, 13 22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

36

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 21, 13 73, 16 30, 40

10, 17, 20, 22, 25, 26

input outputcurrent

file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

37

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 21, 13 73, 16

10, 17, 20, 22, 25, 26, 30, 40

input outputcurrent

file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

38

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 21 13, 16 73

10, 17, 20, 22, 25, 26, 30, 40

input outputcurrent

file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

39

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 21 13, 16

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

40

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 21 13, 16

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

new file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

41

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 22, 24 21

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

13, 16

new file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

42

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 24 21, 22

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

13, 16

new file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

43

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 24

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

13, 16, 21, 22

new file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

44

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page 24

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

13, 16, 21, 22

new file (on disk)

22, 24

22, 24

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

In-memory Heapsort

45

30, 20 10, 40 22, 17 25, 73 16, 26 21, 13

N = 7 pages (file), B = 3 pages (buffers)

Normally we use
3-pages runs in
Pass 0

10, 17, 20, 22, 30, 40 13, 16, 21, 25, 26, 73

Heapsort
3-2=1 page

10, 17, 20, 22, 25, 26, 30, 40, 73

input outputcurrent

file (on disk)

13, 16, 21, 22, 24

new file (on disk)

22, 24

22, 24

only 2 (longer) sorted runs!

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

More on Heapsort
Fact:

average length of a run in heapsort is 2(B-2)
Worst-Case:

– What is min length of a run?
– How does this arise?

Best-Case:
– What is max length of a run?
– How does this arise?

Quicksort is faster, but ... longer runs often means fewer passes!

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

B

…

External Merge Sort Summary

47

unsorted file of N pages

B buffer pages:

BB N/B sorted runs of B pages each
(or, fewer of 2 B − 2 each)0:

B(B − 1)
!/#
#$%

sorted runs of
B B − 1 pages each

1: B(B − 1) B(B − 1)

…

log"#$
&
"

: !/#
#$% !"#$%& '/$ = 1 sorted run! of 𝐵 (B − 1 &'($%&)/* = 𝐵 ()

*
= 𝑁 pages

B(B − 1)+2: B(B − 1)+ B(B − 1)+
!/#
#$% , sorted runs of

B 𝐵 − 1 & pages each

total #I/O: 2 4 𝑁 4 1 + log"#$ ⁄𝑁 𝐵

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

I/O for External Merge Sort
Do I/O a page at a time

– Not one I/O per record

In fact, read a block (chunk) of pages sequentially!
Suggests we should make each buffer (input/output) be a
block of pages.

– But this will reduce fan-in during merge passes!
– In practice, most files still sorted in 2-3 passes.

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Double Buffering
To reduce wait time for I/O request to complete, can prefetch
into “shadow block”.

– Potentially, more passes; in practice, most files still sorted in 2-3 passes.

OUTPUT

OUTPUT'

Disk Disk

INPUT 1

INPUT k

INPUT 2

INPUT 1'

INPUT 2'

INPUT k'

block size
b

B main memory buffers, k-way merge

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Sorting Records!
Sorting has become a blood sport!

– Parallel sorting is the name of the game ...
Minute Sort: how many 100-byte records can you sort in
a minute?
Penny Sort: how many can you sort for a penny?

See http://sortbenchmark.org/

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Units

External Sorting

Intro & 2-way external sorting

General external sorting & performance analysis

Using B+-Trees for sorting

51

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Using B+ Trees for Sorting
Scenario: Table to be sorted has B+ tree index on sorting
column(s).
Idea: Can retrieve records in order by traversing leaf
pages.
Is this a good idea?
Cases to consider:

– B+ tree is clustered
– B+ tree is not clustered

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Using B+ Trees for Sorting
Scenario: Table to be sorted has B+ tree index on sorting
column(s).
Idea: Can retrieve records in order by traversing leaf
pages.
Is this a good idea?
Cases to consider:

– B+ tree is clustered Good idea!
– B+ tree is not clustered

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Using B+ Trees for Sorting
Scenario: Table to be sorted has B+ tree index on sorting
column(s).
Idea: Can retrieve records in order by traversing leaf
pages.
Is this a good idea?
Cases to consider:

– B+ tree is clustered Good idea!
– B+ tree is not clustered Could be a very bad idea!

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Clustered B+ Tree Used for Sorting
Cost: root to the left-most leaf, then retrieve all leaf pages
(Alternative 1)

If Alternative 2 is used?
Additional cost of retrieving
data records: each page
fetched just once.

55

! Always better than external sorting!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Unclustered B+ Tree Used for Sorting
Alternative (2) for data entries; each data entry contains rid of a
data record. In general, one I/O per data record!

(Directs search)

Data Records

Index

Data Entries
("Sequence set")

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

External Sorting vs. Unclustered Index

57

! p: # of records per page
! B=1,000 and block size=32 for sorting
! p=100 is the more realistic value.

N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000
10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 8,000,000 1,000,000 10,000,000 100,000,000
10,000,000 80,000,000 10,000,000 100,000,000 1,000,000,000

if 𝐵 ≥ 𝑁 then
only quick sort!

Special case, that the tree is always behaving like a clustered tree

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Summary
External sorting is used for many different operations in DBs

External merge sort minimizes disk I/O cost:
– Pass 0: Produces sorted runs of size B (# buffer pages). Later passes: merge runs.
– # of runs merged at a time depends on B, and block size.
– Larger block size means less I/O cost per page.
– Larger block size means fewer runs merged.
– In practice, # of passes rarely more than 2 or 3.

CAS CS 460 [Fall 2020] - https://bu-disc.github.io/CS460/ - Manos Athanassoulis

Summary, cont.
Choice of internal sort algorithm may matter:

– Quicksort: Quick!
– Heap/tournament sort: slower (2x), longer runs

The best sorts are wildly fast:
– Despite 40+ years of research, still improving!

Clustered B+ tree is good for sorting
Unclustered tree is usually very bad

