

CAS CS 460: Introduction to Database Systems
Fall 2020

Programming Assignment #1 Part 2

CAS CS 460: Introduction to Database Systems

Due Date and Time: 10/20, 23:59 on gradescope.

In this assignment you will implement the page replacement procedure in the buffer and a B+ tree index for efficient lookups

and range scans. We supply you with all the low-level code you will need to implement the tree structure. You will

implement searching, splitting pages, redistributing tuples between pages, and merging pages (the last two are optional).

The remainder of this document gives some suggestions about how to start coding, describes a set of exercises to help you

work through the assignment, and discusses how to hand in your code. This assignment requires you to write a fair amount

of code, so we encourage you to start early!

1 Getting Started

You should begin with the code you submitted for part 1 (if you did not submit code for assignment 1, or your solution

didn't work properly, contact us to discuss options). We have provided you with extra test cases and .java files for this

assignment that are not in the original code distribution you received, download them here. Again, the unit tests we provide

are to help guide your implementation along, but they are not intended to be comprehensive or to establish correctness.

You will need to add these new files to your release. The easiest way to do this is to copy and paste all of them in their

corresponding folders.

 1.1Implementation hints

We encourage you to read through this entire document to get a feel for the high-level design of SimpleDB before you write

code.

We also suggest exercises along this document to guide your implementation, but you may find that a different order makes

more sense for you. As before, we will grade your assignment by looking at your code and verifying that you have passed the

test for the ant targets test and systemtest. See Section 3.4 for a complete discussion of grading and list of the tests you will

need to pass. More details on the steps in this outline, including exercises, are given in Section 2 below.

2 Implementation Guide

2.1 Page eviction for SimpleDB Buffer

You will choose a page eviction policy and instrument any previous code that reads or creates pages to implement your

policy.

When more than numPages pages are in the buffer pool, one page should be evicted from the pool before the next is loaded.

The choice of eviction policy is up to you; it is not necessary to do something sophisticated. Describe your policy in the

writeup. Notice that BufferPool asks you to implement a flushAllPages() method. This is not something you would ever

need in a real implementation of a buffer pool. However, we need this method for testing purposes. You should never call

https://drive.google.com/file/d/1nXvweqMvlQIeHkwhzeZoi4ebNAhGgD5d/view?usp=sharing

CAS CS 460: Introduction to Database Systems
Fall 2020

this method from any real code.

Because of the way we have implemented ScanTest.cacheTest, you will need to ensure that your flushPage and

flushAllPages methods do no evict pages from the buffer pool to properly pass this test. flushAllPages should call flushPage

on all pages in the BufferPool, and flushPage should write any dirty page to disk and mark it as not dirty, while leaving it in

the BufferPool. The only method which should remove page from the buffer pool is evictPage, which should call flushPage

on any dirty page it evicts.

Exercise 1. Fill in the flushPage() method and additional helper methods to implement page eviction in:

• src/simpledb/BufferPool.java

At this point, your code should pass the EvictionTest system test.

Since we will not be checking for any particular eviction policy, this test works by creating a BufferPool with 16 pages

(NOTE: while DEFAULT_PAGES is 50, we are initializing the BufferPool with less!), scanning a file with many more than

16 pages, and seeing if the memory usage of the JVM increases by more than 5 MB. If you do not implement an eviction

policy correctly, you will not evict enough pages, and will go over the size limitation, thus failing the test.

2.2 Search in B+ Tree

Take a look at BTreeFile.java. This is the core file for the implementation of the B+Tree and where you will write all your

code for this assignment. Unlike the HeapFile, the BTreeFile consists of four different kinds of pages. As you would expect,

there are two different kinds of pages for the nodes of the tree: internal pages and leaf pages. Internal pages are

implemented in BTreeInternalPage.java, and leaf pages are implemented in BTreeLeafPage.java. For convenience, we

have created an abstract class in BTreePage.java which contains code that is common to both leaf and internal pages. In

addition, header pages are implemented in BTreeHeaderPage.java and keep track of which pages in the file are in use. Lastly,

there is one page at the beginning of every BTreeFile which points to the root page of the tree and the first header page. This

singleton page is implemented in BTreeRootPtrPage.java. Familiarize yourself with the interfaces of these classes, especially

BTreePage, BTreeInternalPage and BTreeLeafPage. You will need to use these classes in your implementation of the

B+Tree.

Your first job is to implement the findLeafPage() function in BTreeFile.java. This function is used to find the appropriate leaf

page given a particular key value, and is used for both searches and inserts. For example, suppose we have a B+Tree with two

leaf pages (See Figure 1). The root node is an internal page with one entry containing one key (6, in this case) and two child

pointers. Given a value of 1, this function should return the first leaf page. Likewise, given a value of 8, this function

should return the second page. The less obvious case is if we are given a key value of 6. There may be duplicate keys, so there

could be 6's on both leaf pages. In this case, the function should return the first (left) leaf page.

CAS CS 460: Introduction to Database Systems
Fall 2020

Figure 1: A simple B+ Tree with duplicate keys

Your findLeafPage() function should recursively search through internal nodes until it reaches the leaf page corresponding

to the provided key value. In order to find the appropriate child page at each step, you should iterate through the entries in the

internal page and compare the entry value to the provided key value. BTreeInternalPage.iterator() provides access to the

entries in the internal page using the interface defined in BTreeEntry.java. This iterator allows you to iterate through the key

values in the internal page and access the left and right child page ids for each key.

The base case of your recursion happens when the passed-in BTreePageId has pgcateg() equal to BTreePageId.LEAF,

indicating that it is a leaf page. In this case, you should just fetch the page from the buffer pool and return it. You do not need

to confirm that it actually contains the provided key value f.

Your findLeafPage() code must also handle the case when the provided key value f is null. If the provided value is null, recurse

on the left-most child every time in order to find the left-most leaf page. Finding the left-most leaf page is useful for

scanning the entire file. Once the correct leaf page is found, you should return it. As mentioned above, you can check the

type of page using the pgcateg() function in BTreePageId.java. You can assume that only leaf and internal pages will be passed

to this function.

Instead of directly calling BufferPool.getPage() to get each internal page and leaf page, we recommend calling the wrapper

function we have provided, BTreeFile.getPage(). It works exactly like BufferPool.getPage(), but takes an extra argument to

track the list of dirty pages. This function will be important for the next two exercises in which you will actually update the

data and therefore need to keep track of dirty pages.

Every internal (non-leaf) page your findLeafPage() implementation visits should be fetched with READ_ONLY permission,

except the returned leaf page, which should be fetched with the permission provided as an argument to the function. These

permission levels will not matter for this assignment, but they will be important for the code to function correctly in future

works.

Also note that as part of this implementation, you will need to implement IndexPredicate.java and Predicate.java in order

to support comparison operations.

Exercise 2: BTreeFile.findLeafPage()

CAS CS 460: Introduction to Database Systems
Fall 2020

Fill in the BTreeFile.findLeafPage() method in:

• src/simpledb/BTreeFile.java

After completing this exercise, you should be able to pass all the unit tests in PredicateTest.java, BTreeFileReadTest.java and

the system tests in BTreeScanTest.java.

2.3 Insert in B+ Tree

In order to keep the tuples of the B+Tree in sorted order and maintain the integrity of the tree, we must insert tuples into the

leaf page with the enclosing key range. As was mentioned above, findLeafPage() can be used to find the correct leaf page

into which we should insert the tuple. However, each page has a limited number of slots and we need to be able to insert tuples

even if the corresponding leaf page is full.

As described in the textbook, attempting to insert a tuple into a full leaf page should cause that page to split so that the tuples

are evenly distributed between the two new pages. Each time a leaf page splits, a new entry corresponding to the first tuple

in the second page will need to be added to the parent node. Occasionally, the internal node may also be full and unable

to accept new entries. In that case, the parent should split and add a new entry to its parent. This may cause recursive splits

and ultimately the creation of a new root node.

In this exercise you will implement splitLeafPage() and splitInternalPage() in BTreeFile.java. If the page being split is the

root page, you will need to create a new internal node to become the new root page, and update the BTreeRootPtrPage.

Otherwise, you will need to fetch the parent page with READ_WRITE permissions, recursively split it if necessary, and

add a new entry. You will find the function getParentWithEmptySlots() extremely useful for handling these different cases.

In splitLeafPage() you should "copy" the key up to the parent page, while in splitInternalPage() you should "push" the key up to

the parent page. See Figure 2 and review lecture slides and section 10.5 in the text book if this is confusing. Remember to

update the parent pointers of the new pages as needed (for simplicity, we do not show parent pointers in the figures).

When an internal node is split, you will need to update the parent pointers of all the children that were moved. You may find

the function updateParentPointers() useful for this task. Additionally, remember to update the sibling pointers of any leaf

pages that were split. Finally, return the page into which the new tuple or entry should be inserted, as indicated by the

provided key field. (Hint: You do not need to worry about the fact that the provided key may actually fall in the exact center

of the tuples/entries to be split. You should ignore the key during the split, and only use it to determine which of the two pages

to return.)

CAS CS 460: Introduction to Database Systems
Fall 2020

 Figure 2: Splitting pages

Whenever you create a new page, either because of splitting a page or creating a new root page, call getEmptyPage() to get

the new page. This function is an abstraction which will allow us to reuse pages that have been deleted due to merging (covered

in the next section).

We expect that you will interact with leaf and internal pages using BTreeLeafPage.iterator() and BTreeInternalPage.iterator() to

iterate through the tuples/entries in each page. For convenience, we have also provided reverse iterators for both types of

pages: BTreeLeafPage.reverseIterator() and BTreeInternalPage.reverseIterator(). These reverse iterators will be especially useful

for moving a subset of tuples/entries from a page to its right sibling.

As mentioned above, the internal page iterators use the interface defined in BTreeEntry.java, which has one key and two

child pointers. It also has a recordId, which identifies the location of the key and child pointers on the underlying page. We

think working with one entry at a time is a natural way to interact with internal pages, but it is important to keep in mind that

the underlying page does not actually store a list of entries, but stores ordered lists of *m* keys and *m*+1 child pointers.

Since the BTreeEntry is just an interface and not an object actually stored on the page, updating the fields of BTreeEntry will

not modify the underlying page. In order to change the data on the page, you need to call BTreeInternalPage.updateEntry().

CAS CS 460: Introduction to Database Systems
Fall 2020

Furthermore, deleting an entry actually deletes only a key and a single child pointer, so we provide the funtions

BTreeInternalPage.deleteKeyAndLeftChild() and BTreeInternalPage.deleteKeyAndRightChild() to make this explicit. The

entry's recordId is used to find the key and child pointer to be deleted. Inserting an entry also only inserts a key and single

child pointer (unless it's the first entry), so BTreeInternalPage.insertEntry() checks that one of the child pointers in the

provided entry overlaps an existing child pointer on the page, and that inserting the entry at that location will keep the keys

in sorted order.

In both splitLeafPage() and splitInternalPage(), you will need to update the set of dirtypages with any newly created pages

as well as any pages modified due to new pointers or new data. This is where BTreeFile.getPage() will come in handy. Each

time you fetch a page, BTreeFile.getPage() will check to see if the page is already stored in the local cache (dirtypages),

and if it can't find the requested page there, it fetches the page from the buffer pool.

BTreeFile.getPage() also adds pages to the dirtypages cache if they are fetched with read- write permission, since presumably

they will soon be dirtied.

Note that in a major departure from HeapFile.insertTuple(), BTreeFile.insertTuple() could return a large set of dirty pages,

especially if any internal pages are split. As you may remember from previous assignment, the set of dirty pages is returned

to prevent the buffer pool from evicting dirty pages before they have been flushed.

Warning: as the B+Tree is a complex data structure, it is helpful to understand the properties necessary of every legal

B+Tree before modifying it. Here is an informal list:

1. If a parent node points to a child node, the child nodes must point back to those same parents.

2. If a leaf node points to a right sibling, then the right sibling points back to that leaf node as a left sibling.

3. The first and last leaves must point to null left and right siblings respectively.

4 Record Id's must match the page they are actually in.

5 A key in a node with non-leaf children must be larger than any key in the left child, and smaller than any key in the

right child.

6 A key in a node with leaf children must be larger or equal than any key in the left child, and smaller or equal than any

key in the right child.

7 A node has either all non-leaf children, or all leaf children.

8 A non-root node cannot be less than half full.

We have implemented a mechanized check for all these properties in the file BTreeChecker.java. This method is also used to

test your B+Tree implementation in the systemtest/BTreeFileDeleteTest.java. Feel free to add calls to this function to help

debug your implementation, like we did in BTreeFileDeleteTest.java.

Exercise 3: Splitting Pages

Fill in the BTreeFile.splitLeafPage() and BTreeFile.splitInternalPage() methods in: src/simpledb/BTreeFile.java

After completing this exercise, you should be able to pass the unit tests in BTreeFileInsertTest.java. You should also be

CAS CS 460: Introduction to Database Systems
Fall 2020

able to pass the system tests in systemtest/BTreeFileInsertTest.java. Some of the system test cases may take a few seconds to

complete. These files will test that your code inserts tuples and splits pages correctly, and also handles duplicate tuples.

Extra: Delete in B+ Tree (30%)

This part is not required but if you can pass the tests you will earn some extra credits!

In order to keep the tree balanced and not waste unnecessary space, deletions in a B+Tree may cause pages to redistribute

tuples (Figure 3) or, eventually, to merge (see Figure 4). You may find it useful to review section 10.6 in the textbook.

 Figure 3: Redistributing pages

CAS CS 460: Introduction to Database Systems
Fall 2020

 Figure 4: Merging pages

As described in the textbook, attempting to delete a tuple from a leaf page that is less than half full should cause that page

to either steal tuples from one of its siblings or merge with one of its siblings. If one of the page's siblings has tuples to spare,

the tuples should be evenly distributed between the two pages, and the parent's entry should be updated accordingly (see

Figure 3). However, if the sibling is also at minimum occupancy, then the two pages should merge and the entry deleted

from the parent (Figure 4). In turn, deleting an entry from the parent may cause the parent to become less than half full. In

this case, the parent should steal entries from its siblings or merge with a sibling. This may cause recursive merges or even

deletion of the root node if the last entry is deleted from the root node.

In this exercise you will implement stealFromLeafPage(), stealFromLeftInternalPage(), stealFromRightInternalPage(),

mergeLeafPages() and mergeInternalPages() in BTreeFile.java. In the first three functions you will implement code to evenly

redistribute tuples/entries if the siblings have tuples/entries to spare. Remember to update the corresponding key field in

the parent (look carefully at how this is done in Figure 3 - keys are effectively "rotated" through the parent). In

stealFromLeftInternalPage() / stealFromRightInternalPage(), you will also need to update the parent pointers of the children that

were moved. You should be able to reuse the function updateParentPointers() for this purpose.

CAS CS 460: Introduction to Database Systems
Fall 2020

In mergeLeafPages() and mergeInternalPages() you will implement code to merge pages, effectively performing the inverse of

splitLeafPage() and splitInternalPage(). You will find the function deleteParentEntry() extremely useful for handling all the

different recursive cases. Be sure to call setEmptyPage() on deleted pages to make them available for reuse. As with the

previous exercises, we recommend using BTreeFile.getPage() to encapsulate the process of fetching pages and keeping the

list of dirty pages up to date.

Exercise 4: Redistributing Pages

Implement BTreeFile.stealFromLeafPage(), BTreeFile.stealFromLeftInternalPage(),

BTreeFile.stealFromRightInternalPage() in

• src/simpledb/BTreeFile.java

After completing this exercise, you should be able to pass some of the unit tests in BTreeFileDeleteTest.java (such as

testStealFromLeftLeafPage and testStealFromRightLeafPage). The system tests may take several seconds to complete since

they create a large B+ tree in order to fully test the system.

Exercise 5: Merging Pages

Implement BTreeFile.mergeLeafPages() and BTreeFile.mergeInternalPages() in

• src/simpledb/BTreeFile.java

Now you should be able to pass all unit tests in BTreeFileDeleteTest.java and the system tests in

systemtest/BTreeFileDeleteTest.java.

You have now completed this assignment. Good work!

3. Logistics

You must submit your code (see below) as well as a short (2 pages, maximum) writeup describing your approach. This writeup should:

• Describe any design decisions you made. These may be minimal for pa1.

• Discuss and justify any changes you made to the API.

• Describe any missing or incomplete elements of your code.

• Describe how long you spent on the assignment, and whether there was anything you found particularly difficult or confusing.

3.1. Collaboration

This assignment should be manageable for a single person, but if you prefer to work with a partner, this is also OK (which is the default

setup in our class). Larger groups than 2 are not allowed. Please indicate clearly who you worked with, if anyone, on your individual

writeup.

3.2. Submitting your assignment

Please only submit source code files on gradescope! Do not submit .class files or anything else. If you worked in a group make

a GROUP submission. Also do not forget to mention the names of the people that collaborated in the write-up!

CAS CS 460: Introduction to Database Systems
Fall 2020

3.3 Grading

85% of your grade will be based on whether or not your code passes the system test when we run over it. These tests will be a superset

of the tests we have provided. Before handing in your code, you should make sure your code produces no errors from both ant test and

ant systemtest.

Before testing, we will replace your build.xml and the entire contents of the test directory with our version of these files This means you

cannot change the format of dat files You should also be careful changing our APIs. You should test that your code compiles the

unmodified tests.

It will look roughly like this:

$ tar xvzf cs660-pa1.tar.gz $

cd ./CS460-pa1
[replace build.xml and test] $ ant test

$ ant systemtest

[additional tests]

If any of these commands fail, we'll be unhappy, and, therefore, so will your grade. An additional 15% of your grade will be based on

the quality of your writeup and our subjective evaluation of your code.

3.3 Academic Honesty

Assignments must be completed by you or your group. Representing the work of another person as your own is expressly forbidden.

This includes "borrowing", "stealing", copying programs/solutions or parts of them from others. We will use an automated plagiarism

checker. Cheating will not be tolerated under any circumstances.

See the CAS Academic Conduct Code, in particular regarding plagiarism and cheating on exams. A student suspected to violate this

code will be reported to the Academic Conduct Committee, and if found culpable, the student will receive a grade of "F" for the course.

We hope you enjoy hacking on this assignment!

https://www.bu.edu/academics/policies/academic-conduct-code/

	Programming Assignment #1 Part 2
	CAS CS 460: Introduction to Database Systems
	1 Getting Started
	1.1Implementation hints

	2 Implementation Guide
	2.1 Page eviction for SimpleDB Buffer
	2.2 Search in B+ Tree
	Exercise 2: BTreeFile.findLeafPage()

	2.3 Insert in B+ Tree
	Exercise 3: Splitting Pages

	Extra: Delete in B+ Tree (30%)
	Exercise 4: Redistributing Pages
	Exercise 5: Merging Pages

