
1

CAS CS 460: Introduction to Database Systems
Fall 2020

Programming Assignment #1 Part 1

CAS CS 460: Introduction to Database Systems

Due Date and Time: 09/24, 23:59 on gradescope.

In this assignment you will implement parts of a basic database management system called SimpleDB. For this assignment,

you will focus on implementing the core modules required to access stored data on disk; in future, you will add support for

various query processing operators, as well as transactions, locking, and concurrent queries.

SimpleDB is written in Java. We have provided you with a set of mostly unimplemented classes and interfaces. You will need

to write the code for these classes. We will grade your code by running a set of system tests written using JUnit. We have

provided a number of unit tests, which we will not use for grading but that you may find useful in verifying that your code

works.

The remainder of this document describes the basic architecture of SimpleDB, gives some suggestions about how to start

coding, and discusses how to hand in the assignment.

We recommend that you start as early as possible on this assignment.

1. Getting Started

These instructions are written for Unix-based platform (e.g., Linux, MacOS, etc.) Because the code is written in Java, it should

work under Windows as well; however, some directions in this document may not apply. (Java 1.8.* is required)

Download the file from HERE

SimpleDB uses the Ant build tool to compile the code and run tests. Ant is similar to make, but the build file is written in

XML and is somewhat better suited to Java code. Most modern Linux distributions include Ant.

To help you during development, we have provided some unit testing cases. Again, you should not rely on them exclusively

to verify the correctness of your project, they are by no means comprehensive.

To run the unit tests, go to terminal and type the following commands:

$ cd CS460-pa1

$ # run all unit tests

$ ant test

$ # run a specific unit test

$ ant runtest -Dtest=TupleTest

You should see output similar to:

build output...

test:
[junit] Running simpledb.CatalogTest

[junit] Testsuite: simpledb.CatalogTest

[junit] Tests run: 5, Failures: 4, Errors: 1, Time elapsed: 0.037 sec [junit] Tests run: 5, Failures: 4,
Errors: 1, Time elapsed: 0.037 sec

... stack traces and error reports ...

https://drive.google.com/file/d/1f1B1Spwt8Eqdo0lWBO6UofBBDnZ0tD3U/view?usp=sharing

2

CAS CS 460: Introduction to Database Systems
Fall 2020

The output above indicates problems occurred during compilation; this is because the code we have given you doesn't yet

work. As you complete parts of the assignment, you will work towards passing additional unit tests. If you wish to write new

unit tests as you code, they should be added to the test/simpledb directory.

1.1. Running System Tests

We have also provided tests that will eventually be used for grading. These tests are structured as JUnit tests that live in the

test/simpledb/systemtest directory. To run all of the system tests, use the systemtest build target:

If the tests pass, you will see something like the following:

$ ant systemtest

... build output ...
[junit] Testsuite: simpledb systemtest ScanTest

[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 7.278 sec

[junit] Tests run: 3, Failures: 0, Errors: 0, Time elapsed: 7.278 sec

[junit] Testcase: testSmall took 0.937 sec
[junit] Testcase: testLarge took 5.276 sec

[junit] Testcase: testRandom took 1.049 sec

BUILD SUCCESSFUL

Total time: 52 seconds

1.2. Implementation hints

Before beginning to write code, we encourage you to read through this entire document to get a feel for the high-level design

of SimpleDB. You will need to fill in any piece of code that is not implemented. It will be obvious where we think you should

write code. You may add private methods and/or helper classes. You may change APIs, but make sure our grading tests still

run and make sure to mention, explain your decisions in your writeup.

In addition to the methods that you need to fill out for this assignment, the class interfaces contain numerous methods that you

need not implement until subsequent assignments. These will either be indicated per class:

// //Not necessary for lab1.

public class Insert implements DbIterator {

or per method:

public boolean deleteTuple(Tuple t) throws DbException {

 // some code goes here
 // not necessary for lab1

 return false;
}
The code that you submit should compile without having to modify these methods

1.3. Transactions, locking, and recovery

As you look through the interfaces, we have provided you, you will see a number of references to locking, transactions, and

recovery. You do not need to support these features here, but you should keep these parameters in the interfaces of your code

3

CAS CS 460: Introduction to Database Systems
Fall 2020

because you will be implementing transactions and locking in a future assignment. The test code we have provided you with

generates a fake transaction ID that is passed into the operators of the query it runs; you should pass this transaction ID into

other operators and the buffer pool.

2. SimpleDB Architecture and Implementation Guide

SimpleDB consists of:

• Classes that represent fields, tuples, and tuple schemas;

• Classes that apply predicates and conditions to tuples;

• One or more access methods (e.g., heap files) that store relations on disk and provide a way to iterate through tuples

of those relations;

• A collection of operator classes (e.g., select, join, insert, delete, etc.) that process tuples;

• A buffer pool that caches active tuples and pages in memory and handles concurrency control and transactions

(neither of which you need to worry about for now); and,

• A catalog that stores information about available tables and their schemas.

SimpleDB does not include many things that you may think of as being a part of a "database." In particular, SimpleDB does

not have:

• (In this assignment), a SQL front end or parser that allows you to type queries directly into SimpleDB.

• Views.

• Data types except integers and fixed length strings.

• (In this assignment) Query optimizer.

• Indices.

In the rest of this Section, we describe each of the main components of SimpleDB that you will need to implement in this

assignment. You should use the exercises in this discussion to guide your implementation. This document is by no means a

complete specification for SimpleDB; you will need to make decisions about how to design and implement various parts of

the system. Note that for this assignment you do not need to implement any operators (e.g., select, join, project) except

sequential scan. You will add support for additional operators in future assignments.

2.1. The Database Class

The Database class provides access to a collection of static objects that are the global state of the database. In particular, this

includes methods to access the catalog (the list of all the tables in the database), the buffer pool (the collection of database file

pages that are currently resident in memory), and the log file. You will not need to worry about the log file in this assignment.

We have implemented the Database class for you. You should take a look at this file as you will need to access these objects.

2.2. Fields and Tuples

Tuples in SimpleDB are quite basic. They consist of a collection of Field objects. The Tuple.Field is an interface that different

data types (e.g., integer, string) implement. Tuple objects are created by the underlying access methods (e.g., heap files, or B-

trees), as described in the next section. Tuples also have a type (or schema), called a tuple descriptor, represented by a

TupleDesc object. This object consists of a collection of Type objects, one per field in the tuple, each of which describes the

type of the corresponding field.

Exercise 1. Implement the skeleton methods in:

src/simpledb/TupleDesc.java

4

CAS CS 460: Introduction to Database Systems
Fall 2020

src/simpledb/Tuple.java

At this point, your code should pass the unit tests TupleTest and TupleDescTest.

2.3. Catalog

The catalog (class Catalog in SimpleDB) consists of a list of the tables and schemas of the tables that are currently in the

database. You will need to support the ability to add a new table, as well as getting information about a particular table.

Associated with each table is a TupleDesc object that allows operators to determine the types and number of fields in a table.

The global catalog is a single instance of Catalog that is allocated for the entire SimpleDB process. The global catalog can be

retrieved via the method Database.getCatalog(), and the same goes for the global buffer pool (using Database.getBufferPool()).

Exercise 2. Implement the skeleton methods in:

src/simpledb/Catalog.java

At this point, your code should pass the unit tests in CatalogTest.

2.4. BufferPool

The buffer pool (class BufferPool in SimpleDB) is responsible for caching pages in memory that have been recently read from

disk. All operators read and write pages from various files on disk through the buffer pool. It consists of a fixed number of

pages, defined by the numPages parameter to the BufferPool constructor. In later assignments, you will implement an eviction

policy. For this one, you only need to implement the constructor and the BufferPool.getPage() method used by the SeqScan

operator. The BufferPool should store up to numPages pages. For this assignment, if more than numPages requests are made

for different pages, then instead of implementing an eviction policy, you may throw a DbException. In future you will be

required to implement an eviction policy.

The Database class provides a static method, Database.getBufferPool(), that returns a reference to the single BufferPool

instance for the entire SimpleDB process.

Exercise 3. Implement the getPage() method in:

src/simpledb/BufferPool.java

We have not provided unit tests for BufferPool. The functionality you implemented will be tested in the implementation of

HeapFile below. You should use the DbFile.readPage method to access pages of a DbFile.

2.5. HeapFile access method

Access methods provide a way to read or write data from disk that is arranged in a specific way. Common access methods

include heap files (unsorted files of tuples) and B-trees; for this assignment, you will only implement a heap file access method,

and we have written some of the code for you.

A HeapFile object is arranged into a set of pages, each of which consists of a fixed number of bytes for storing tuples, (defined

by the constant BufferPool.PAGE_SIZE), including a header. In SimpleDB, there is one HeapFile object for each table in the

database. Each page in a HeapFile is arranged as a set of slots, each of which can hold one tuple (tuples for a given table in

SimpleDB are all of the same size). In addition to these slots, each page has a header that consists of a bitmap with one bit per

tuple slot. If the bit corresponding to a particular tuple is 1, it indicates that the tuple is valid; if it is 0, the tuple is invalid (e.g.,

5

CAS CS 460: Introduction to Database Systems
Fall 2020

has been deleted or was never initialized.) Pages of HeapFile objects are of type HeapPage which implements the Page

interface. Pages are stored in the buffer pool but are read and written by the HeapFile class.

SimpleDB stores heap files on disk in more or less the same format they are stored in memory. Each file consists of page data

arranged consecutively on disk. Each page consists of one or more bytes representing the header, followed by the page size

bytes of actual page content. Each tuple requires tuple size * 8 bits for its content and 1 bit for the header. Thus, the number

of tuples that can fit in a single page is:

tuples per page = floor((page size * 8) / (tuple size * 8 + 1))

Where tuple size is the size of a tuple in the page in bytes. The idea here is that each tuple requires one additional bit of storage

in the header. We compute the number of bits in a page (by mulitplying page size by 8), and divide this quantity by the number

of bits in a tuple (including this extra header bit) to get the number of tuples per page. The floor operation rounds down to the

nearest integer number of tuples (we don't want to store partial tuples on a page!). Once we know the number of tuples per

page, the number of bytes required to store the header is simply:

headerBytes = ceiling(tupsPerPage/8)

The ceiling operation rounds up to the nearest integer number of bytes (we never store less than a full byte of header

information.)

The low (least significant) bits of each byte represents the status of the slots that are earlier in the file. Hence, the lowest bit

of the first byte represents whether or not the first slot in the page is in use.

Also, note that the high-order bits of the last byte may not correspond to a slot that is actually in the file, since the number of

slots may not be a multiple of 8. Also note that all Java virtual machines are big-endian.

Exercise 4. Implement the skeleton methods in:

src/simpledb/HeapPageId.java

src/simpledb/RecordID.java

src/simpledb/HeapPage.java

Although you will not use them directly now, we ask you to implement getNumEmptySlots() and isSlotUsed() in HeapPage.

These require pushing around bits in the page header. You may find it helpful to look at the other methods that have been

provided in HeapPage or in src/simpledb/HeapFileEncoder.java to understand the layout of pages.

You will also need to implement an Iterator over the tuples in the page, which may involve an auxiliary class or data structure.

At this point, your code should pass the unit tests in HeapPageIdTest, RecordIdTest, and HeapPageReadTest.

After you have implemented HeapPage, you will write methods for HeapFile to calculate the number of pages in a file and to

read a page from the file. You will then be able to fetch tuples from a file stored on disk.

Exercise 5. Implement the skeleton methods in:

src/simpledb/HeapFile.java

6

CAS CS 460: Introduction to Database Systems
Fall 2020

To read a page from disk, you will first need to calculate the correct offset in the file. Hint: you will need random access to

the file in order to read and write pages at arbitrary offsets. You should not call BufferPool methods when reading a page from

disk.

You will also need to implement the HeapFile.iterator() method, which should iterate through through the tuples of each page

in the HeapFile. The iterator must use the BufferPool.getPage() method to access pages in the HeapFile. This method loads

the page into the buffer pool and will eventually be used (in a later assignment) to implement locking-based concurrency

control and recovery. Do not load the entire table into memory on the open() call -- this will cause an out of memory error for

very large tables.

At this point your code should pass the unit tests in HeapFileReadTest.

2.6. Operators

Operators are responsible for the actual execution of the query plan. They implement the operations of the relational algebra.

In SimpleDB, operators are iterator based; each operator implements the DbIterator interface.

Operators are connected together into a plan by passing lower-level operators into the constructors of higher-level operators,

i.e., by 'chaining them together.' Special access method operators at the leaves of the plan are responsible for reading data from

the disk (and hence do not have any operators below them).

At the top of the plan, the program interacting with SimpleDB simply calls getNext on the root operator; this operator then

calls getNext on its children, and so on, until these leaf operators are called. They fetch tuples from disk and pass them up the

tree (as return arguments to getNext); tuples propagate up the plan in this way until they are output at the root or combined or

rejected by another operator in the plan.

For this time, you will only need to implement one SimpleDB operator.

Exercise 6. Implement the skeleton methods in:

src/simpledb/SeqScan.java

This operator sequentially scans all the tuples from the pages of the table specified by the tableid in the constructor. This

operator should access tuples through the DbFile.iterator() method.

At this point, you should be able to complete the ScanTest system test.

Good work! You will fill in other operators in subsequent assignments.

3. Logistics

You must submit your code (see below) as well as a short (2 pages, maximum) writeup describing your approach. This writeup

should:

• Describe any design decisions you made. These may be minimal for pa1.

• Discuss and justify any changes you made to the API.

• Describe any missing or incomplete elements of your code.

• Describe how long you spent on the assignment, and whether there was anything you found particularly difficult or

confusing.

7

CAS CS 460: Introduction to Database Systems
Fall 2020

3.1. Collaboration

This assignment should be manageable for a single person, but if you prefer to work with a partner, this is also OK (which is

the default setup in our class). Larger groups than 2 are not allowed. Please indicate clearly who you worked with, if anyone,

on your individual writeup.

3.2. Submitting your assignment

Please only submit source code files on gradescope! Do not submit .class files or anything else. If you worked in a group

make a GROUP submission. Also do not forget to mention the names of the people that collaborated in the write-up!

3.3 Grading

85% of your grade will be based on whether or not your code passes the system test when we run over it. These tests will be

a superset of the tests we have provided. Before handing in your code, you should make sure your code produces no errors

from both ant test and ant systemtest.

Before testing, we will replace your build.xml and the entire contents of the test directory with our version of these files This

means you cannot change the format of dat files You should also be careful changing our APIs. You should test that your code

compiles the unmodified tests.

It will look roughly like this:

$ tar xvzf cs660-pa1.tar.gz $

cd ./CS460-pa1
[replace build.xml and test] $ ant test

$ ant systemtest
[additional tests]

If any of these commands fail, we'll be unhappy, and, therefore, so will your grade. An additional 15% of your grade will be

based on the quality of your writeup and our subjective evaluation of your code.

3.3 Academic Honesty

Assignments must be completed by you or your group. Representing the work of another person as your own is expressly

forbidden. This includes "borrowing", "stealing", copying programs/solutions or parts of them from others. We will use an

automated plagiarism checker. Cheating will not be tolerated under any circumstances.

See the CAS Academic Conduct Code, in particular regarding plagiarism and cheating on exams. A student suspected to

violate this code will be reported to the Academic Conduct Committee, and if found culpable, the student will receive a grade

of "F" for the course.

We hope you enjoy hacking on this assignment!

https://www.bu.edu/academics/policies/academic-conduct-code/

	Programming Assignment #1 Part 1

