
CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 26: Crash Recovery
Instructor: Manos Athanassoulis

https://midas.bu.edu/classes/CS460/

https://midas.bu.edu/classes/CS460/

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Review: The ACID properties
Atomicity: All actions in the transaction happen, or none happen.
Consistency: If each transaction is consistent, and the DB starts
consistent, it ends up consistent.
Isolation: Execution of one transaction is isolated from that of other
transactions.
Durability: If a transaction commits, its effects persist.

Question: which ones does the Recovery Manager help with?

Atomicity & Durability (and also used for
Consistency-related rollbacks)

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Motivation
Atomicity:

– Transactions may abort (“Rollback”).

Durability:
– What if DBMS stops running? (Causes?)

crash!
Desired state after system restarts:
– T1 & T3 should be durable.
– T2, T4 & T5 should be aborted

(effects should not be seen).

T1
T2
T3
T4
T5

Abort
Commit

Commit

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Assumptions

Concurrency control is in effect.

– Strict 2PL, in particular.

Updates are happening “in place”.

– i.e. data is overwritten on (deleted from) the actual page copies (not private

copies).

Can you think of a simple scheme (requiring no logging) to guarantee Atomicity &

Durability?

– What happens during normal execution (what is the minimum lock granularity)?

– What happens when a transaction commits?

– What happens when a transaction aborts?

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Buffer Management Plays a Key Role
• Force policy – make sure that every update is on disk before commit.

– Provides durability without REDO logging.
– But, can cause poor performance.

• No Steal policy – don’t allow buffer-pool frames with uncommited updates to
overwrite committed data on disk.
– Useful for ensuring atomicity without UNDO logging.
– But can cause poor performance.

excessive I/Os:
if a highly used page is updated by 20 consecutive trxs, it will be over-written 20 times!!

requires too much memory:
assumes all pages for all active transactions fit in the bufferpool!!

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Buffer Management Plays a Key Role
• Force policy – make sure that every update is on disk before commit.

– Provides durability without REDO logging.
– But, can cause poor performance.

• No Steal policy – don’t allow buffer-pool frames with uncommited updates to
overwrite committed data on disk.
– Useful for ensuring atomicity without UNDO logging.
– But can cause poor performance.

excessive I/Os:
if a highly used page is updated by 20 consecutive trxs, it will be over-written 20 times!!

requires too much memory:
assumes all pages for all active transactions fit in the bufferpool!!

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

“three things are important
in the database world:
performance, performance,
and performance”

7

Bruce Lindsay, IBM Research
ACM SIGMOD Edgar F. Codd Innovations award 2012

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Preferred Policy: Steal/No-Force
More complicated but allows for highest performance

NO FORCE (allows updates of a committed transaction to NOT be on disk on commit time)

(complicates enforcing Durability)
– What if system crashes before a modified page written by a committed transaction

makes it to disk?
– Write as little as possible, in a convenient place, at commit time, to support

REDOing modifications.

STEAL (allows pages with uncommitted updates to overwrite committed data)

(complicates enforcing Atomicity)
– What if the transaction that performed updates aborts?
– What if system crashes before transaction is finished?
– Must remember the old value of P (to support UNDOing the write to page P).

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Buffer Management summary

Force

No Force

No Steal Steal

No REDO
No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Basic Idea: Logging

Record REDO and UNDO information, for every update, in a log.
– Sequential writes to log (put it on a separate disk).

– Minimal info (diff) written to log, so multiple updates fit in a single log page.

Log: An ordered list of REDO/UNDO actions
– Log record contains:

<XID, pageID, offset, length, old data, new data>

– and additional control info (which we’ll see soon).

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Write-Ahead Logging (WAL)
The Write-Ahead Logging Protocol:

1. Must force the log record for an update before the corresponding data page
gets to disk.

2. Must force all log records for a Xact before commit. (e.g. transaction is not
committed until all of its log records including its “commit” record are on the
stable log.)

#1 (with UNDO info) helps guarantee Atomicity.
#2 (with REDO info) helps guarantee Durability.
This allows us to implement Steal/No-Force

Exactly how is logging (and recovery!) done?
– We’ll look at the ARIES algorithm from IBM.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

WAL & the Log

Each log record has an unique Log Sequence Number (LSN).
– LSNs are always increasing.

Each data page contains a pageLSN.
– The LSN of the most recent log record for an update to that page.

System keeps track of flushedLSN.
– The max LSN flushed so far.

WAL: For a page i to be written
must flush log at least to the
point where:

pageLSNi £ flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

flushedLSN

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Log Records
prevLSN is the LSN of the previous log record written by this transaction

(so records of an transaction form a linked list backwards in time)

Possible log record types:
Update, Commit, Abort
Checkpoint (for log maintenance)
Compensation Log Records (CLRs)

– for UNDO actions
End (end of commit or abort)

LSN
prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecord fields:

update
records
only

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Other Log-Related State

In-memory table:

Transaction Table
– One entry per currently active transactions.

• entry removed when the transaction commits or aborts

– Contains XID, status (running/committing/aborting), and lastLSN (most recent
LSN written by transaction).

Also: Dirty Page Table (will cover later …)

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

CS460: Intro to Database Systems

Class 25: Crash Recovery (cont’d)
Instructor: Manos Athanassoulis

https://midas.bu.edu/classes/CS460/

https://midas.bu.edu/classes/CS460/

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Today
4:30pm-5:15pm Finish up recovery

5:15pm-5:30pm Course Evaluation

5:30pm-5:45pm SQL Hands-on test

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

PREVIOUSLY IN RECOVERY …

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Motivation
Atomicity:

– Transactions may abort (“Rollback”).

Durability:
– What if DBMS stops running? (Causes?)

crash!
Desired state after system restarts:
– T1 & T3 should be durable.
– T2, T4 & T5 should be aborted

(effects should not be seen).

T1
T2
T3
T4
T5

Abort
Commit

Commit

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Buffer Management summary

Force

No Force

No Steal Steal

No REDO
No UNDO UNDO

No REDO

UNDO
REDO

No UNDO
REDO

Force

No Force

No Steal Steal

Slowest

Fastest

Performance
Implications

Logging/Recovery
Implications

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

The Big Picture: What’s Stored Where

DB

Data pages
each
with a
pageLSN

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

RAM

prevLSN
XID
type

length
pageID

offset
before-image
after-image

LogRecords

LOG

master record
LSN of

most recent
checkpoint

update
commit
abort
checkpoint
CLR
end

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

WAL & the Log

Each log record has an unique Log Sequence Number (LSN).
– LSNs are always increasing.

Each data page contains a pageLSN.
– The LSN of the most recent log record for an update to that page.

System keeps track of flushedLSN.
– The max LSN flushed so far.

WAL: For a page i to be written
must flush log at least to the
point where:

pageLSNi £ flushedLSN

LSNs

DB

pageLSNs

RAM

flushedLSN

pageLSN

Log records
flushed to disk

“Log tail”
in RAM

flushedLSN

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

EXECUTING TRANSACTIONS WITH WAL

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Normal Execution of a transaction

Series of reads & writes, followed by commit or abort.
– We will assume that disk write is atomic.

• In practice, additional details to deal with non-atomic writes.

Strict 2PL.

STEAL, NO-FORCE buffer management, with Write-Ahead Logging.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Transaction Commit
Write commit record to log.
All log records up to transaction’s commit record are flushed to
disk.

– Guarantees that flushedLSN ³ lastLSN.

– Note that log flushes are sequential, synchronous writes to disk.
– Many log records per log page.

Commit() returns.
Write end record to log.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Simple Transaction Abort
For now, consider an explicit abort of a Xact.

– No crash involved.
We want to “play back” the log in reverse order, UNDOing updates.

– Get lastLSN of Xact from Xact table.
– Can follow chain of log records backward via the prevLSN field.
– Write a “CLR” (compensation log record) for each undone operation.
– Write an Abort log record before starting to rollback operations.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Abort, continued

To perform UNDO, must have a lock on data!
– No problem (we’re doing Strict 2PL)!

Before restoring old value of a page, write a CLR:
– You continue logging while you UNDO!!
– CLR has one extra field: undonextLSN

• Points to the next LSN to undo (i.e. the prevLSN of the record we’re currently undoing).

– CLRs never Undone (but they might be Redone when repeating history:
guarantees Atomicity!)

At end of UNDO, write an “end” log record.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Checkpointing
Conceptually, keep log around for all time. Obviously this has
performance/implementation problems…
Periodically, the DBMS creates a checkpoint, in order to minimize the time taken to
recover in the event of a system crash. Write to log:

– begin_checkpoint record: Indicates when chkpt began.
– end_checkpoint record: Contains current transaction table and dirty page table.

This is a ‘fuzzy checkpoint’:
• Other Xacts continue to run; so these tables accurate only as of the time of the

begin_checkpoint record.
• No attempt to force dirty pages to disk; effectiveness of checkpoint limited by oldest

unwritten change to a dirty page.
– Store LSN of most recent checkpoint record in a safe place (master record).

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Crash Recovery: Big Picture

• Start from a checkpoint (found

via master record).

• Three phases. Need to do:

– Analysis - Figure out which

transactions committed since
checkpoint, which failed.

– REDO all actions.

(repeat history)

– UNDO effects of failed transactions.

Oldest log rec.
of Xact active
at crash

Smallest recLSN
in dirty page
table after
Analysis

Last chkpt

CRASH

A R U

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Recovery: The Analysis Phase
Re-establish knowledge of state at checkpoint.

– via transaction table and dirty page table stored in the checkpoint
Scan log forward from checkpoint.

– End record: Remove Xact from Xact table.
– All Other records: Add Xact to Xact table, set lastLSN=LSN, change Xact status on

commit.
– also, for Update records: If page P not in Dirty Page Table, Add P to DPT, set its

recLSN=LSN.

At end of Analysis…
– transaction table says which xacts were active at time of crash.
– DPT says which dirty pages might not have made it to disk

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Phase 2: The REDO Phase
We Repeat History to reconstruct state at crash:

– Reapply all updates (even of aborted transactions!), redo CLRs.
Scan forward from log rec containing smallest recLSN in DPT.

Q: why start here?
For each update log record or CLR with a given LSN, REDO the action unless:

– Affected page is not in the Dirty Page Table, or
– Affected page is in D.P.T., but has recLSN > LSN, or
– pageLSN (in DB) ³ LSN. (this last case requires I/O)

To REDO an action:
– Reapply logged action.
– Set pageLSN to LSN. No additional logging, no forcing!

the first update that dirtied the page

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Phase 3: The UNDO Phase
ToUndo={lastLSNs of all Xacts in the Xact Table}
Repeat:

– Choose (and remove) largest LSN among ToUndo.
– If this LSN is a CLR and undonextLSN==NULL

Write an End record for this transation.
– If this LSN is a CLR, and undonextLSN != NULL

Add undonextLSN to ToUndo
– Else this LSN is an update. Undo the update, write a CLR, add prevLSN to

ToUndo.

Until ToUndo is empty.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Example of Recovery

begin_checkpoint

end_checkpoint

update: T1 writes P5

update: T2 writes P3

T1 abort

CLR: Undo T1 LSN 10

T1 End

update: T3 writes P1

update: T2 writes P5

CRASH

LSN LOG

00

05

10

20

30

40

45

50

60

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

prevLSNs

RAM

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Example: Crash During Restart!

begin_checkpoint, end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART
CLR: Undo T2 LSN 20, T2 end

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

90, 95

Xact Table
lastLSN
status

Dirty Page Table
recLSN

flushedLSN

ToUndo

undonextLSN

RAM

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Additional Crash Issues
What happens if system crashes during Analysis? During REDO?

How do you limit the amount of work in REDO?
– Flush asynchronously in the background.

How do you limit the amount of work in UNDO?
– Avoid long-running transactions.

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Today
4:30pm-5:15pm Finish up recovery

5:15pm-5:30pm Course Evaluation
https://bu.campuslabs.com/courseeval/

5:30pm-5:45pm SQL Hands-on test

https://bu.campuslabs.com/courseeval/

CAS CS 460 [Fall 2019] - https://midas.bu.edu/classes/CS460/ - Manos Athanassoulis

Today
4:30pm-5:15pm Finish up recovery

5:15pm-5:30pm Course Evaluation
https://bu.campuslabs.com/courseeval/

5:30pm-5:45pm SQL Hands-on test
--> check piazza for the queries

https://bu.campuslabs.com/courseeval/

